specification & description language - real time

| oviect

Date

Version

Reference

Graphical language to specify
and design real time
and embedded software

October 1st, 2003

2.1

http://www.sdl-rt.org

1 SDI- SDL-RT standard V2.1

Page 2 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

Introduction = - = - === cmcmmme e e 7
Architecture--- - - - - - - oo e e 9
Y (< o ST PP UPPR PRSP 9
L6 (< TSP UPRTPRRRTPIN 9
CoOmMMUNICALION == = - == = - == s o m s o e e oo 11
Behavior ------- - m e oo 14
= 1 TR 14
S (<SPS P PP PRSP 14
S 0 o ST SR 15
IMIESSAgE INPUL ...ttt sttt b et b et e e e e e b e bt b e se e e bt e e e e e e et et e nbenbeneennis 16
eSSz o T o0 11 o | PR 17
Toaqueueld 18
To aprocess name 18

To the environment 19
Viaachannel or agate 20

IMIESSAgE SAVE.......ccureeeeeeree st et ettt s e s e e st e s e e n e e s e e e n e e saeesane e ame e er e e nnnesne e neenneenrneea 23
CONLINUOUS SIONEeevieieeieeieeste ettt e te e ete e bessaesseesseeseesaeesseensesseenseensesseesseensennnans 23
o (o) o SO TRPRPSPSRR 24
D=0 o o TS 24
SEMAPNOTE TAKE ...ttt et e s e et eeaeeste et e saeesseensesneesteensesneesennnans 25
SEMBPNOIE GIVE..... ittt bbbt b e bt b et e et et e bbb e ne e 26
BT G = SRR 26
QIS S (] o TSRS 26
QLIS Qe == 11 oo PRSP 27
010 o (U1 0= o || O 27
(O01 0] 07 oi (0] £ TP PR PR 28
TrANSITION OPLION ...ttt b e bbbt e se e e e e e e e e e ne e 28
(©0 001007 o | USRS 29
= 1 T o TSRS 30
0100 (U1 L = SR 31
e 0Te= o (U1 L= £ U] o SR 31
TEXE SYMIDIOL ...t e b et eere e re e e ae e aeenaesneenrennnans 31
Additional heading SYMDOIooiiiii e 32
Object Creation SYMDOL...........coiiiieeee e 32
Y100 £ 0T o [= 1 oo OSSPSR 34
DeclarafionS - - = === ---ccccmmmmoc e n e m e e 35
PrOCESS......ooiitiiti s 35
Procedure deClaration..............c.occiiiiiiiic 36
SDL-RT defined procedure 36
C defined procedure 37
Sz o LTS P SRR 37
11 £ PSSR 38
SEMBPNOIES ...ttt bbbt h et e b e b e bt bt bt Rt ae e e e et e e e e e ne e 38
Y SR e e 39

Specification & Description Language - Real Time Page 3

1 SDI-I ;i i SDL-RT standard V2.1

AGENT INSIANCE. ...ttt et e b e b bt s bt bt et et et et e e e s be b e neenne e 39
SEMAPNOre FEPIESENEAIONc.vieieie ettt e et e e b e e sse e e b e e ssaeeneesseeeseesrneans 40
Semaphore MANIPUIBLIONS..........cuiiiiiie ettt e e e e e b e e sseeebeesseeesseesseesnneenreaans 40
IMESSAgE EXCNANGE. ...ttt ettt sttt e et et e b e s bt sb e e bt e st e e e e e e e benaeebenre s 42
SYNCAIONOUS CAIIS ...ttt e s re e ae e e teeneeneenns 44
R = TSP PR U SRR OPRTPRRRPRN 45
1012 £ R 47
TIME INTEIVEL ...t et b e bbbt et e e b e te st b e 49
(@0 (=0 1o o SRS 51
Y O = = =0 Tor ST 52
QIS Y/ 1 oo S 54
(001 01]107C o TP 54
o o o 54
High-18VEl MSC (HMSC) ...ttt 55
Datatypes ----------cccmcmmem e e e e e e m e e m e 57
Type definitioNS N NEAAEN'Sc.ooiiiee e 57
VAITADIES ...ttt b bRttt b bRt et 57
CIUNCHIONS ...ttt st bt be b e s e st e e et e nb e besbeebenbeeneeneeneeneeneeneas 57
EXIEIN@l TUNCHIONSottt s e s re et e e neesbeeeesreeeeaneens 57
Object orientation ----------------- oo 58
BIOCK ClBSS ...ttt ettt et et e s e ae et esseenteenteeneenneenseeneenreas 58
01015 Y o = SRR 59
(O S SY 0 =0 = OSSR 66
Class 66
Specialisation 69
Association 69
Aggregation 70
Composition 71
S 0= 0 L= PSSR 71
Usagein an agent 72
Usagein aclass diagram 72
Deployment diagram ----------------- - 73
N0 L= RTPRPSPRR 73
(O00T 07010101 o | TR PR PR TRTRO 73
(@00]107= o1 o o PSR PRSUSPSRSRPN 74
7= o< 416 (= 0oy U TSRS PPPRPRPIN 75
L8 [o =0 = 1 o] o IO PR SSTSS PP 76
Node and coOmMpPONENtS IAENEITIEIS........ccceieeie et 76
Symbolscontained indiagrams - ------------------““--------------- 77
Textual representation ----------------“-““““ - oo 78
Examplesystems - - ----- - oo oo 82
PING PONQ ...t e R bRt a e e e e 82
A global variable ManiPUIBLION...........coeiiiiiieii e 86

Page 4 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

ACCESS CONLIOI SYSEEIM. ...ttt e et bbb bt a e se e e e e e e nnenne e 90
Requirements 90
Analysis 93
Architecture 94
pCentral process 95
getCardNCode procedure 96
pLocal process 97
Display procedure 100
DisplayStar procedure 101
Deployment 102
Differenceswith classical SDL - -------------m--mmm oo 103
D= = 1Y 01T PSP PRPRRRN 103
SEMBPINOTES ...t bbb e e e b e s be bt s bt e bt ae et e e e b bbb e nnis 103
T 1 PP RRPRRIN 103
INBITIES. ...ttt ettt e et e e s ae e e et e R e e ae e e b e e e me e e s e e eme e e be e e mn e e ne e eaneeneeenneeneenneenneas 103
(@ o)1= ot W0 101 =1 o] o IS 103
Memory management - - - - -------- - - - oo oo 105
GlODE VAINADIES.......cceiieeeiece ettt re s 105
IMESSAE PAIAIMELENSeeeeitie ettt ettt ettt s e sse e e e sse e e s be e e sase e e asseeeneeeeseeesbeeesnneeeanneaens 105
Keywords ----------ommmmm oo oo 106
g1 G e LR T 107
Naming ConVeNntion - - - - - === - === --- oo oo oo 108
Lexical rules - --------mmmmm e e 109
GloSSaArY ---------mmme oo eeeee i o 110
Modificationsfrom previousreleases - - - - - - - ------ - - - - 111
Semaphore MaNIPUIBLION..........ccviieieeieee st e e e te e e sreeneennesneeneas 111
V10toV11111
(@ o] 1= we g1 o1 i o] o PSS U PP UPTPRPRO 111
V11toV12111
V12toVv20111
IMTESSATES ...ttt r et nn e r e e 111
V11toV12111
V20toVv21111
Y S 111
V11toV12111
L= S LSS 112
V12toV20112
(@ 0 - 11 oo S 112
V1.2toVv20112
0 [e e I 113

Specification & Description Language - Real Time Page 5

1 SDI- SDL-RT standard V2.1

Page 6 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

1 - Introduction

Asitsname states, SDL-RT isbased on SDL standard from I TU extended with real time concepts.
V2.0 has introduced support of UML from OMG in order to extend SDL-RT usage to static part
of the embedded software and distributed systems.

SDL has been developed in the first place to specify telecommunication protocols but experience
showed some of its basic principles could be used in awide variety of real time and embedded
systems. Its main benefits are:

* architecture definition,

» graphical finite state machine,

* object orientation.

But SDL was not meant to design real time systems and some major drawbacks prevented it to be
widely used in the industry:

» obsolete data types,

 old fashioned syntax,

* NO pointer concept,

* no semaphore concept.

SDL being agraphical language it is obviously not suited for any type of coding. Some parts of
the application still need to be written in C or assembly language. Furthermore legacy code or off
the shelf libraries such as RTOS, protocol stacks, drivers have C APIs. Last but not least thereis
no SDL compilers so SDL need to be translated into C code to get down to target. So all SDL ben-
efits are lost when it comesto real coding and integration with real hardware and software.

Considering the above considerations areal time extension to SDL needed to be defined that
would keep the benefits of SDL and solve its weaknesses. The smpler the better | SDL-RT was
born based on 2 basic principles:

* Replace SDL datatypesby C,

* Add semaphore support in the behavior diagrams.

UML diagrams have been added to SDL-RT V2.0 to extend SDL-RT application field:

* When it comesto object orientation, UML class diagram brings a perfect graphical rep-
resentation of the classes organisation and relations. Dynamic classes represent SDL
agents and static classes represent C++ classes.

» To handle distributed systems, UML deployment diagram offers a graphical representa-
tion of the physical architecture and how the different nodes communicate with each
other.

Specification & Description Language - Real Time Page 7

1 SDI-I ;i i SDL-RT standard V2.1

Theresult, SDL-RT, is&
e simpler,
object oriented,
graphical language,
combining dynamic and static representations,
supporting classical real time concepts,
extended to distributed systems,
based on standard languages.

Page 8 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

2 - Architecture

2.1 - System

The overall design is called the system and everything that is outside the system is called the
environment. Thereis no specific graphical representation for the system but the block represen-
tation can be used if needed.

2.2 - Agents

An agent is an element in the system structure. There are two kinds of agents: blocks and proc-
esses. A system is the outermost block.

A block isastructuring element that does not imply any physical implementation on the target. A
block can be further decomposed in blocks and so on allowing to handle large systems. A block
symbol isasolid rectangle with itsname in it:

MyBlock

A simple block example.

When the SDL-RT system is decomposed down to the ssmplest block, the way the block fulfilsits
functionality is described with processes. A lowest level block can be composed of one or several
processes. To avoid having blocks with only one processit is alowed to mix together blocks and
processes at the same level e.g. in the same block.

A process symbol is arectangle with cut corners with its namein it:

A simple process example.

A processisbasically the code that will be executed. It is afinite state machine based task (Cf.
“Behavior” on page 14) and has an implicit message queue to receive messages. It is possible to
have severa instances of the same process running independently. The number of instances
present when the system starts and the maximum number of instances are declared between

parenthesis after the name of the process. The full syntax in the process symbol is:
<process name>[(<nunber of instances at startup>, <naxi mum nunber of instances>)]
If omitted default values are 1 for the number of instances at startup and infinite for the maximum

number of instances.

Specification & Description Language - Real Time Page 9

NTIRT,

SDL-RT standard V2.1

‘ MyProcess(0,10)

An exampl e process that has no instance at startup and a maximum of 10 instances.

The overall architecture can be seen as a tree where the leaves are the processes.

MySystem
blockA blockB
processA 1l ‘ ‘processAZ(O,lO)’ blockC ‘ processB1(1,1) ’
‘ processC1 ’ ‘ processC2 ’ ‘ processC3 ’

A view of the architecture tree

When viewing a block, depending on the size of the system, it is more comfortable to only repre-

sent the current block level without the lower agents.

Page 10

Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

3 - Communication

SDL-RT isevent driven, meaning communication is based on message exchanges. A message has
aname and a parameter that is basically a pointer to some data. Messages go through channels
that connect agents and end up in the processes implicit queues.

Channels have names and are represented by a one-way or two-ways arrows. A channel nameis
written next to the arrow without any specific delimiter. The list of messages going in a specific
way are listed next to the arrow between brackets and separated by commas. M essages can be
gathered in message lists, to indicate a message list in the list of messages going through a chan-
nel the message list is surrounded by parenthesis. Note the same message can be listed in both
directions.

channelName
) >
aOneWayChannel example: [messaged.
(messagel istl),
message?]
channelName
aTwoWayChannel example: - >
[message4, [messagel,
messages, message2,
message?] (messagelist1)]

Channels end points can be connected to: the environment, another channel or a process. Graphi-
cally achannel can be connected to ablock but it is actually connected to another channel inside
the block. To represent the outside channels connected to the block at the upper architecture level,
ablock view is surrounded by aframe representing the edge of the block. The upper level chan-
nels connected to the block are then represented outside the frame and channels inside the block
can be connected to these upper level channels. Note a channel can be connected to several chan-
nels. In any case consistency is kept between levels e.g. all messagesin achannel are listed in the
upper or lower level channels connected to it.

Specification & Description Language - Real Time Page 11

NTIRT,

SDL-RT standard V2.1

Example:
Let us consider an SDL-RT system made of two blocks: blockA and blockB.
mySystem A [messages,
message9]
chEnvB
v [message7]
chEnvA chAB
p| DlockA | g p-| blockB
[messagel, [messaged] [messageb,
message2, messaget]
message3]

An example system view

The channels chEnvA and chEnvB are connected to the surrounding frame of the system ny Sys-
t em They define communication with the environment, e.g. the interface of the system. chEnvA
and chAB are connected to bl ockA and define the messages coming in or going out of the block.

chAB
blockA A [messageb,
messaged]
chABD
Y [messaged]
chEnvA ChEnvAC p| DlockC | g chCD p| blockD
[messagel, [message4, [messages,
message2, messagel0, messagel?,
message3] messagell] messagel3]

[messagel4]

Aninner block view

The inner view of block blockA showsit is made of the blocks blockC and blockD and of the pro-
cess processE. chEnvAC is connected to the upper level channel chEnvA and chABD is connected

Page 12

Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

to the upper channel chAB. The flow of messages is consistent between levels since for example
the messages coming in block blockA through chEnvA (messagel, message2, message3) are a'so
listed in chEnvAC.

Specification & Description Language - Real Time Page 13

1 SDI-I ;i i SDL-RT standard V2.1

4 - Behavior

First of all a process has an implicit message queue to receive the messages listed in the channels.
A process description is based on an extended finite state machine. A process state determines
which behavior the process will have when receiving a specific stimulation. A transition is the
code between two states. The process can be hanging on its message queue or a semaphore or run-
ning e.g. executing code.

SDL-RT processes run concurrently; depending on the underlying RTOS and sometimes on the
target hardware the behavior might be slightly different. But messages and semaphores are there
to handle process synchronization so the final behavior should be independent of the RTOS and of
the hardware. Since SDL-RT is open to any C code it is up to the designer to make sure this state-
ment staystrue!

Note that in a state diagram the previous statement is always connected to the symbol upper frame
and the next statement is connected to the lower frame or on the side.

4.1 - Sart

The start symbol represent the starting point for the execution of the process:

D

Sart symbol

The transition between the Start symbol and the first state of the processis called the start transi-
tion. Thistransition is the first thing the process will do when started. During thisinitialization
phase the process can not receive messages. All other symbols are allowed.

4.2 - Sate

The name of the process state is written in the state symbol:

< <state name> >

Sate symbol

The state symbol means the processis waiting for some input to go on, the allowed symbolsto
follow a state symbol are:
* message input
the message could be coming from an external channel, or it could be atimer message
started by the process itself.
* continuous signal

Page 14 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

when reaching a state with continuous signals, the expressions in the continuous signals

are evaluated following the defined priorities. All continuous signal expressions are eval-
uated before the message input !

¢ save
the incoming message can not be treated in the current process state. It is saved until the
process state changes. When the process state has changed the saved messages are
treated first (before any other messages in the queue but after continuous signals).

Some transitions can be valid for several states, the different state names are then listed separated
by acomma. A star ('*’) means all states.

Examples:
, . idle,
idle mai ntenance
| | |

megl msg2 msg1 <a > 0>
In statei dl e msgl can be Messagemsgl can In statesi dl e and
received and nmsg2 is saved. be received in any mai nt enance the
state expression a>0 is

first evaluated.

A processin aspecific state can receive severa types of messages or treat several continuous sig-
nals. To represent such a situation it is possible to have several message inputs connected to the
state or to split the state in several symbols with the same name.

Examples:
(idle (idle ’ (idle
|
sigl si g2 sigl sigl
Two ways of writing in statei dl e,
si gl or si g2 can bereceived.
4.3-3op

A process can terminate itself with the stop symbol.

Specification & Description Language - Real Time Page 15

S TIRT,
X

Sop symbol

Note a process can not kill another process, it can only kill itself.
There isno syntax for that symbol.

4.4 - M essage input

The message input symbol represent the type of message that is expected in an SDL-RT state. It
always follows an SDL-RT state symbol and if received the symbols following the input are exe-
cuted.

<Message name>
[(<paraneter
, <paramet er >}*)]

Message input symbol

An input has a name and can come with parameters. To receive the parametersit is necessary to
declare the variables that will be assigned to the parameters values in accordance with the mes-
sage definition.

The syntax in the message input symbol is the following:

<Message name> [(<paraneter nanme> {, <parameter name>}*)]

<par anet er name> iSavariable that needs to be declared.

If the parameter type isundeclared it isstill possible to transmit unstructured data with the param-
eter length and a pointer on the data.

If the parameter length is unknown, because the parameters are unstructured data, it is also possi-
ble to get the parameter length assigned to a pre-declared variable.

<Message name>
[(<data | ength>,
Kpoi nter on data>)]

Message with undeclared parameters

The syntax in the message input symbol is the following:
<Message name> [(<data | ength>, <pointer on data>)]

<dat a | engt h> isavariable that needs to be declared asal ong.
<poi nter on data> isavariable that needsto be declared as an unsi gned char *.

Page 16 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

Examples:
r-- - - - - - - - - - - — — ~
MESSAGE 3
| ConReqg(nyStruct *, int, char), |

ConConf ,

D sReq; |
_______________ -
myStruct *pDat a;

i nt myl nt;

char myChar ;

| ong myDat aLengt h;
unsi gned char *myDat a;

ConRe !

(pDatg Di sReq

ny! nt ’ ConConf (myDat aLengt h,
rryCha’r) pDat a)

4.5 - M essage output

A message output is used to exchange information. It puts datain the receiver’s message queuein
an asynchronous way.

Message output symbol

When a message has parameters, user defined local variables are used to assign the parameters.
General syntax in the output symbol is:
<nmessage name>[(<paraneter value> {, <paraneter value>}*)] TO XXX. ..

If the parameter is undefined the length of data and a pointer on the data can be provided. In that
case, the symbol syntax is:
<message name>[(<data | ength>, <pointer on data>)] TO XXX ..

The syntax in the message output symbol can be written in several ways depending if the queueld
or the name of the receiver isknown or not. A message can be sent to a queue Id or to a process
name or viaa channel or a gate. When communicating with the environment, a special syntax is
provided.

Specification & Description Language - Real Time Page 17

{sDL

SDL-RT standard V2.1

45.1Toaqueueld

The symbol syntax is:

KVESSage name>
[(<paraneter val ue>
, <par anet er val ue>)}*]
TO I D
I<recei ver queue id>

Message output to a queue id

<nessage name>[(<paraneter val ue> {, <paraneter value>}*)] TO.ID <receiver

queue id>
It can take the value given by the SDL-RT keywords:
PARENT The queue id of the parent process.
SELF The queue id of the current process.
OFFSPRI NG The queue id of the last created process if any or NULL if none.
SENDER The queue id of the sender of the last received message.
Examples:
|II—\/ESSAGE N
| ConReq(aStruct *, int), |
ConConf ,
| D sReq; |
Lo - - -
aStruct *nmyStruct;
i nt nmyl nt;
| ong myDat aLengt h;
unsi gned char *pDat a;
?On;gte?uct , mylnt) ConConf TO_I D . (an/g?aLengt h,
TO | D PARENT aCal cul at edRecei ver bData) TO I D
ConReq take 2 parame- There is no parameter DisReq parameter is
ters. A pointer on associated with the undefined. Length of
aStruct andanint. message ConConf . data and pointer on data
aregiven.

4.5.2 To a process name

The syntax is:

KVESSage name>
[(<paraneter val ue>
, <parameter val ue>)}*]
ITO_NAME
I<r ecei ver name>

Message output to a process name

Page 18

Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

<nessage nane>[(<parameter value> {, <paraneter value>}*)] TO NAME <receiver
nane>

<recei ver nane> isthe name of aprocessif unique or it can be ENv when simulating and the
message is sent out of the SDL system.

Examples:
ConReq ConConf
(nmyStruct, nylnt) TO_NAMVE
TO_NAME ENV recei ver Process
Note:

If several instances have the same process name (several instances of the same process for exam-
ple), the’ TO_NAME’ will send the message to the first created process with the corresponding
name. Therefore this method should no be used when the process name is not unique within the
system.

4.5.3 To the environment

KVESsSage nanme>

[(<paraneter val ue>

, <par anet er val ue>)}*]
TO_ENV

<KC macro name>

Message output to environment

The symbol syntax is:
<nessage nane>[(<parameter value> {, <paraneter value>}*)] TO ENV [<C macro
name>]
<C nacr o name> isthe name of the macro that will be called when this SDL output symbol is hit.
The macro will take 3 parameters:

* name of message,

* length of a C struct that contains all parameters,

 pointer on the C struct containing all parameters.
Thefields of the implicit C struct will have the same type as the types defined for the message.

If no macro is declared the message will be sent to the environment.

Specification & Description Language - Real Time Page 19

1 SDI-I ;i i SDL-RT standard V2.1

Example:
F———— — — — — — — — - — = -~
MESSACGE A
| ConReq(aStruct *, int); |
Lo—- - - -
ConReq ConReq
(myStruct, nylnt, (myStruct, nylnt,
myChar) TO_ENV mychar) TO_ENV
VESSAGE_TO HDLC
In this second example the generated code will be:
MESSAGE TO HDLC(ConReq,inplicitC
StructLength,inplicitCStructPointer)
The implicit C struct will have the following definition:
typedef struct inplicitCStruct {
aStruct *paran,
i nt par ang;
} inmplicitCStruct;
That allows to re-use the same macro with different types of
messages.
Note:

The implicit C struct memory spaceisimplictly allocated and it is the C macro responsability to
ensure it will be freed at some point.

4.5.4 Viaa channel or a gate

A message can be sent via a channel in the case of a process or via a gate in the case of a process
class.

KVESSage name>
[(<paraneter val ue>
, <par amet er val ue>)}*]
M A
kchannel or gate nanme>

Message output via a channdl or a gate

The symbol syntax is:
<nessage nane>[(<paraneter val ue> {, <paraneter value>}*)] VI A <channel or gate
name>

<channel or gate nane> isthe name of the channel or gate the message will go through.

This concept is especially usefull when using object orientation since classes are not supposed to
know their environment; so messages are sent via the gates that will be connected to the surroud-
ing environment when instanciated.

Page 20 Specification & Description Language - Real Time

SDL-RT standard V2.1

Examples:
mySystem A [message?]
chEnvB
v [messaged]
chEnvA chAB
[messagel] [message2] [message3)- - .
e I
Phe I
e I
e |
- - |
e I
- - I
e |
e |
e |
- - I
e |
- |
message?2 nessage2 '
VI A [TO_NAME

With the architecture defined above, both outputs are equivalent.

Specification & Description Language - Real Time

Page 21

SDL SDL-RT standard V2.1

nmyPr ocess
[msg2]
cl nt ernal
;7 gate2 T N

upper Level Channel p@Jatel
[msgl] |
AN /
s/ SN0 - —-=——=-—-——-—~ /
7 /
Y /
/ /
my Gat e2
[msg2]

myGat el

[msgl]

myClass

aProcess sendsnmsg2 to myPr ocess without knowing its name nor its PID

Page 22 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

4.6 - Message save

A process may have intermediate states that can not deal with new request until the on-going job
is done. These new requests should not be lost but kept until the process reaches a stable state.
Save concept has been made for that matter, it basically holds the message until it can be treated.

<Message nane>

Save symbol

The Save symbol is followed by no symbol. When the process changes to a new state the saved
messages will be the first to be treated (after continuous signalsif any).

The symbol syntax is:

<nessage name>

Even if the message has parameters.

Example:

‘IIIIIIHIII' I‘I%HHHHHHI"

[[|

nsgl < nsg2 < nsg3 nsg3 < nsgl <

(o) (o () (o)

Let’'sconsider the above pro- msg3, msg2, nsgl. neg3 will Sincensg3 has been saved it
cessinstatei nt er torecelve besaved, nsg2 will makethe will first be treated and
the following messages. process go to state st abl e. finaly nsg1.

4.7 - Continuous signal

A continuous signal is an expression that is evaluated right after a process reaches a new state. It
is evaluated before any message input or saved messages.

<condi tion
expressi on>

Continuous signal symbol

The continuous signal expression to evaluate can contain any standard C expression that returns a
C true/false expression. Since an SDL state can contain several continuous signal a priority level

Specification & Description Language - Real Time Page 23

1 SDI-I ;i i SDL-RT standard V2.1

needs to be defined with the PRI O keyword. Lower values correspond to higher priorities. A con-
tinuous signal symbol can be followed by any other symbol except another continuous signal or a
message input. The syntax is:

<C condi ti on expression>

PRI O <priority | evel >

Example:

< idle >
| |
msgl < < a>5 > <b<10) ¥ (c!c>
PRIO 2 PRIO 1

In the above example, when the processgets evaluate expression a > s. If the expressionis
in state idle it will first evaluate expression not true or if the process stayed in the same
(b<10) || (ct=0). If theexpressionisnottrueor stateit will executensgl transition.

if the process stayed in the same state it will

4.8 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Example:

¥ Say hi to your friend ¥/
printf("Hello world '\ n");
for (i=0;i<MAX;i++)

{

newString[i] = oldString[i];

4.9 - Decision

A decision symbol can be seen asa C switch / case.

or

Decision symbols

Page 24 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

Sinceit isgraphical and therefore uses quite some space on the diagram it is recommended to use
it when its result modifies the resulting process state. The decision symbol is a diamond with
branches. Since adiamond is one of the worst shape to put text init, it can be a"diamonded” rect-
angle. Each branch can be seen as a case of the switch.
The expression to evaluate in the symbol can contain:

» any standard C expression that returns a C true/fal se expression,

» an expression that will be evaluated against the values in the decision branches.
The values of the branches have keyword expressions such as:

e > <, >=, <=, 1=, ==

« true, false, else
The el se branch contains the default branch if no other branch made it.

Examples:
aVal ue
== myVal ue
bVal ue
true fal se el se == 2 el se < 2

4.10 - Semaphoretake
The Semaphore take symbol is used when the process attempts to take a semaphore.

[<status> =]
<senmaphor e nane>
(<tinmeout option>)

Semaphore take symbol

To take a semaphore, the syntax in the ‘ semaphore take SDL-RT graphical symbol’ is.
[<status> =] <semaphore name>(<timeout option>)
where <t i meout option>is
« FOREVER
Hangs on the semaphore forever if not available.
« NOWAIT
Does not hang on the semaphore at al if not available.

Specification & Description Language - Real Time Page 25

1 SDI-I ;i i SDL-RT standard V2.1

e <nunber of ticks to wait for>
Hangs on the semaphore the specified number of ticksif not available.
and <st at us> IS
+ K
If the semaphore has been successfully taken
+ ERROR
If the semaphore was not found or if the take attempt timed out.

4.11 - Semaphoregive

<semaphor e nanme>

Semaphore give symbol

To give a semaphore, the syntax in the * semaphore give SDL-RT graphical symbol’ is:
<senmaphore nane>

4.12 - Timer start

<timer nanme>
(<time out val ue
in tick counts>)

Timer start symbol

To start atimer the syntax in the ‘start timer SDL-RT graphical symbol’ is:
<timer name>(<time value in tick counts>)
<tinme value in tick counts>isusualy an‘int’ butis RTOS and target dependant.

4.13 - Timer stop

<ti mer nane>

Timer stop symbol

To cancel atimer the syntax in the ‘ cancel timer SDL-RT graphical symbol’ is:
<ti mer name>

Page 26 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

4.14 - Task creation

<process nane>
[: <process cl ass>]
[PRIO <priority>]

Task creation symbol

To create a process the syntax in the create process symbol is.
<process nane>[:<process class>] [PRIO <priority>]
to create one instance of <process cl ass> named <pr ocess nane> with priority <pri ority>.

Examples:

anot her Pr ocess:

Process
myProcess aCl assOf Process m

PRI O 80

4.15 - Procedure call

[<return variable> =]
<pr ocedur e nane>
({<paraneters>}*);

Procedure call symbol

The procedure call symbol isused to call an SDL-RT procedure (Cf. “ Procedure declaration” on
page 36). Sinceit is possible to call any C function in an SDL-RT action symbol it isimportant to
note SDL-RT procedures are different because they know the calling process context, e.g. SDL-
RT keywords such as SENDER, OFFSPRING, PARENT are the ones of the calling process.

The syntax in the procedure call SDL graphical symbol is the standard C syntax:

[<return variable> =] <procedure name>({<paraneters>}*);

Examples:

nyResult =
myPr ocedur e anot her Procedure();
(myPar aneter);

Specification & Description Language - Real Time Page 27

1 SDI-I ;i i SDL-RT standard V2.1

4.16 - Connectors

<connect or nane> <connect or nane>

Connector out Connector in

Connectors are used to:

» gplit atransition into severa pieces so that the diagram stays legible and printable,

* to gather different branches to a same point.
A connector-out symbol has a name that relates to a connector-in. The flow of execution goes
from the connector out to the connector in symbol.

A connector contains a name that has to be unique in the process. The syntax is:
<connector nane>

Examples:
printf("Hello "); | y myLabel
s/

| p |
| v |
| 4 |
| s/

nyLabel v g V

printf("world '\'n");

4.17 - Transition option

Transition options are similar to C #i f def .

Transition option symbol

The branches of the symbol have valuest r ue or f al se. Thet r ue branch is defined when the
expression is defined so the equivalent C code is:

Page 28 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

#i f def <expression>
The branches can stay separated to the end of the transition or they can meet again and close the
option aswould do an #endi f .

Examples:

DEBUG
true false
a = 2; a = 2;
b = 3; b = 3;
myLogFuncti on(a, b);
EXTEND
true false
a = 2; a = 4;
b = 3; b = 4;
c =4 c = 10;
idle mai nt enance

4.18 - Comment

The comment symbol allows to write any type of informal text and connect it to the desired sym-
bol. If needed the comment symbol can be left unconnected.

Specification & Description Language - Real Time Page 29

1 SDI-I ;i i SDL-RT standard V2.1

| Free text to
——{conment a con-
| nected synbol .

Comment symbol

Example:

(idle
negl i ndi cates

msgl the systemis
ready.

4.19 - Extension

The extension symbol is used to complete an expression in asymbol. The expression in the exten-
sion symbol is considered part of the expression in the connected symbol. Therefore the syntax is
the one of the connected symbol.

<connect ed
— synbol
synt ax>

Extension symbol

Page 30 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

Example:

(TyDat aLengt i,
ConReq :VODEL‘\"‘/)
MESSAGE_TO HDLC

isequivalent to:

IConReq

(nmyDat aLengt h, nyDat a)
TO_ENV

IMESSAGE_TO HDLC

4.20 - Procedure start

This symbol is specific to a procedure diagram. It indicates the procedure entry point.

D

Procedure start symbol

There is no syntax associated with this symbol.

4.21 - Procedurereturn

This symbol is specific to a procedure diagram. It indicates the end of the procedure.

@ [<return val ue>]

Procedure return symbol

This symbol is specific to a procedure diagram. It indicates the end of the procedure. If the proce-
dure has areturn value it should be placed by the symbol.

4.22 - Text symbol
This symbol is used to declare C types variables.

Specification & Description Language - Real Time Page 31

1 SDI-I ;i i SDL-RT standard V2.1

<any C | anguage instructions >

The syntax is C language syntax.

4.23 - Additional heading symbol
This symbol isused to declare SDL-RT specific headings.

Additional heading symbol

It has a specific syntax depending in which diagram it is used.
» Block heading
Allows to declare messages and messages lists:
MESSAGE <nessage nane> [(<param type>)] {, <nsg name> [(<paramtype>)]};
MESSAGE LI ST <nessage |ist nane> = <nmessage nanme> {, <nmessage nane>}*;
* Process class heading
Allows to specify the superclass to inherit from:
I NHERI TS <super cl ass nane>;
» System, Block, Block class heading
Allows to specify the package to use:
USE <package nane>;
* Process or Process class heading
Allows to define the stack size:
STACK <stack size val ue>;

4.24 - Object creation symbol

<object name>:<class name>({ <parameter>}*)

Thisis equivalent to creating an instance of class<cl ass nane> named <obj ect name>.
This symbol can be used by tools to check consistency between the dynamic SDL view and the
static UML view.

Page 32 Specification & Description Language - Real Time

SDL-RT standard V2.1

Examples:
myObject:M/Cl ass(12, "fo0");
myObj ect = new MyC ass(12, "foo");
/ \
nmyProcess
\ y
I foo: MO ass(...)
foo |1
M/Q ass myProcess start
transition
The relation described in the class diagram implies the instance of Wy Cl ass
named after role name f oo must be created in the start transition.

Specification & Description Language - Real Time

Page 33

1 SDI-I ;i i SDL-RT standard V2.1

4.25 - Symbolsordering

The following table shows which symbols can be connected to a specific symbol.

The symbol in
esy < o |o § |- |E
this column can =) = = =2z |8 |2 |6
be followed by 0 o o 5 £ |0 |8 S |3
. > = = E 28|95 |5 |c|Q |0
the ticked sym- e s |2 |8 g S 8 |5 % % 515515
bolsinitsrow. | |q | |5 SlolE5@ |B|B|5 |5 |C @ o T |5 @ @ e
sMS2SsE 8 B85 5 EE@IEEEEEES
BB B = |0 8 |8 S = S | |6 |0 |05 |8 |8 [0
Start SIX X - X - - XX X[XX |- [X[X[X[|X|X]|-]-]|X
state S G T G I ' I Gl N R R A N R R S B N B B A
stop o B BT T T R B B BT B R N B R -] -] -
input SUX X - X - - XXX XXX X|X|X[X][X]-]X]|X
output XX - X - - XXX XXX X|X|X[X]X]-]|X]|X
save e T e e B B e e B e B e e e A N
continuous SUX X - X - - XX XXX X[X|X|X[X]X]-]|X]|X
action XX - X - s XX XXX X[X|X|X[X][X]-]|X]|X
semaphoretake | - | X | X | - | X |- | = [X|[X|X|X|X|X|X|X[|X|X[X]|-]X]|X
semaphoregive | - | X | X |- [X | - |- | X[X[X[X[X|X|X[X[X|X]|X]|-[X]X
timer start XX - X - - XXX XXX X|X|X[X]X]-]|X]|X
timer stop XX - X - XX XX XXX X|X[X]X]-]|X]|X
task creation SUX X - X - XX XXX XXX X]|X[X]|-]|X]|X
procedure call SUX X - X - - X XXX XXX X[X|X[X]|-]X]|X
connector out e T e e e B (e R e i I R A N A B I
connector in SUX X - X - XX XXX X[X|X|=]-]X]-]|X]|X
transitionoption| - | X [X [- | X | = | = [X | X[X | X | X | X[X|X]|-|X[X]|-]X]|X
procedurestart | - [X | X | - | X |- |- | X[X|X|X[X|X|X|X|-|X|X]|-]|X]|X
procedurereturn| - | - | - | - |- |- |-|-|-|-|-|[-|-|-|-|-|-1|-1|-|-/|-

The table above should be read row by row. The symbol in the left column can be followed by the
ticked symbols onitsrow. For example the stop symbol can not be followed by any other symbol.
The state symbol can be followed by input, save, or continuous signal symbols.

Page 34 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

5 - Declarations

5.1 - Process
A processisimplicitly declared in the architecture of the system (Cf. “ Architecture” on page 9)
since the communication channels need to be connected.

aProcess

Process symbol

A process has an initial number of instances at startup and a maximum number of instances. A
process can a so be an instance of a process class (Cf. “ Object orientation” on page 58), in that
case the name of the class follows the name of the instance after a colon.

The general syntax is:

<process instance nane>[:<process class>][(<initial nunber of instances> <maximm
nunmber of instances>)] [PRIO <priority>]

The priority isthe one of the target RTOS.
Please note the stack size can be defined in the process or process class additional heading symbol
as described in paragraph “ Additional heading symbol” on page 32.

When a process is an instance of a process class the gates of the process class need to be con-
nected in the architecture diagram. The names of the gates appear in the process symbol with a
black circle representing the connection point.

<process name>:
<process cl ass nane>

<gate nane

Process class instance

The messages defined in the package going through the gates must be consistent with the mes-
sages listed in the architecture diagram where the process instance is defined.

Specification & Description Language - Real Time Page 35

1 SDI-I ;i i SDL-RT standard V2.1

Example:
myPr ocess
[sig3]
[sig2]
gate2
aProcess: aProcessd ass
upper Level Channel |«a » @Uatel
[sigQutl] [siglnl]

5.2 - Procedure declaration

An SDL-RT procedure can be defined in any diagram: system, block, or process. It isusually not
connected to the architecture but since it can output messages a channel can be connected to it for
informational purpose.

<return type>

<function nane>
({<paraneter type>
<par ameter nane>}*);

Procedure declaration symbol

The declaration syntax is the same as a C function. A procedure definition can be done graphi-
cally with SDL-RT or textually in astandard C file.

5.2.1 SDL-RT defined procedure

If defined with SDL-RT the calling process context isimplicitly given to the procedure. Soif a
message output is done, the message will be output from the process calling the procedure. That is
why the message should be defined in one of the channels connected to the process instead of a
channel connected to a procedure. To call such a procedure the procedure call symbol should be
used.

Page 36 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

5.2.2 C defined procedure
If defined in C language the process context is not present. To call such a procedure a standard C
statement should be used in a action symbol.

Example:
int
cal cul at eCRC ‘ aProcess
(int datalLength,

char *pData);
[s1g3]
[sig2]

bProcess
upper Level Channel <=
[sigQutl] [siglnl]

5.3 - Messages

Messages are declared at any architecture level in the additional heading symbol. A message dec-
laration may include one or several parameters. The parameters data types are declared in C. The
syntax is.

MESSAGE <nessage nane> [(<paraneter type> {, paraneter type}*)] {, <message
name> [(<paraneter type>)]}*;

It is also possible to declare message lists to make the architecture view more synthetic. Such a
declaration can be made at any architecture level in the additional heading symbol. The syntax is:
MESSAGE LI ST <message |ist nanme> = <nessage nane> {, <message name>}*{, (<mes-
sage |list nane>)}*;

The message parameters are not present when defining a message list. A message list can contain
amessage ligt, in that case the included message list name is surrounded by parenthesis.

Specification & Description Language - Real Time Page 37

1 SDI-I ;i i SDL-RT standard V2.1

MESSAGE \
nmsgl(nyStruct *, int, char), \
msg2(voi d),)
nsg3(void *, short), |

nsg4(int *), |

|
|
|
|
|

|
|
|
| msgs;
|

IMVESSAGE LI ST

| nyMessageList = nsgl, nsg2;

IMESSAGE_LI ST

| anot her MessagelLi st = (nyMessagelList), nmsg3;

54-Timers

There is no need to declare timers. They are self declared when used in a diagram.

5.5 - Semaphores

Semaphores can be declared at any architecture level. Since each RTOS has its own type of sema-
phores with specific options there will be no detailed description of the syntax. The general syntax
in the declaration symbol is:

<semaphore type>
<senmaphore name>({<list of options>[,]}*);

Semaphore declaration

It isimportant to note the semaphore isidentified by its name.

Page 38 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

6-MSC

SDL-RT integrates the Message Sequence Chart dynamic view. On such a diagram, time flows
from top to bottom. Lifelines represent SDL-RT agents or semaphores and key SDL-RT events
are represented. The diagram put up front the sequence in which the events occur.

In the case of embedded C++ it is possible to use alifeline to represent an object. In that case the
typeisobj ect and the name should be <obj ect nane>: <cl ass nane>

6.1 - Agent instance

An agent instance starts with an agent instance head followed by an instance axis and ends with
an instance tail or an instance stop as shown in the diagrams below.

[<type>] [<type>]
<name> <name>

]

Lifeline with an instance Lifeline with an instance
tail symbol stop symbol

The type of the agent can be specified on top of the head symbol and the name of the agent iswrit-
ten in the instance head symbol. The instance tail symbol means the agent lives after the diagram.
The instance stop symbol means the agent no longer exist after the symbol.

When an agent creates another agent a dashed arrow goes from the parent agent to the child agent.

Specification & Description Language - Real Time Page 39

1 SDI-I ;i i SDL-RT standard V2.1

process

___________________ > p?ﬁsprl ng

]

Process pParent creates process pOffspring

6.2 - Semaphore representation

A semaphore representation is made of a semaphore head, alifeline, and a semaphore end or tail.
The symbols are the same as for a process except for the head of the semaphore.

[semaphor €] [semaphor €]

ﬂ <nane> ﬂ <nane>

Semaphore with an Semaphore with an
instance tail symbol instance stop symbol

6.3 - Semaphore manipulations

Several cases are to be considered with semaphore manipulations. A process makes an attempt to
take a semaphore, its attempt can be successful or unsuccessful, if successful the semaphore
might still be available (counting semaphore) or become unavailable. During the time the sema-
phore is unavailable, itslifeline gets thicker until it is released.

Page 40 Specification & Description Language - Real Time

SDL-RT standard V2.1

NTIRT,

The manipulation symbols are the following:

<sem nane>

Semaphore creation from aknown
process.

take »{

Semaphore take attempt.

Semaphore take successfull but
semaphore is still available.

timed out

Semaphore take timed out.

give

Semaphore give. The semaphore
was available before the give.

Semaphore iskilled by aknown
process.

ﬂ <sem nane>

Semaphore creation from an
unknown process.

take

Semaphore take attempt on a
locked semaphore.

Semaphore take successfull and the
semaphore is not available any
more.

| |

Semaphore continues.

give

Semaphore give. The semaphore
was unavailable before the give.

X

Semaphoreiskilled by an
unknown process.

Specification & Description Language - Real Time

Page 41

1 SDI-I ;i i SDL-RT standard V2.1

Example:
myProcl myProc2
——————————————— »ﬂ mySem
take
succeeded
4_ ______________________
take
-
give
FJ_ succeeded
__________________ _>
give
-
4_ _________________

ProcessnyPr oc1 first creates semaphore ny Sem then takesit successfully.
Process nmyPr oc2 makes an attempt to take semaphore ny Sembut gets

blocked on it. Process myPr oc1 releases the semaphore so nyPr oc2 suc-

cessfully gets the semaphore. Process nyPr oc2 givesit back, and killsiit.

6.4 - M essage exchange

A message symbol isasimple arrow with its name and optional parameters next to it. The arrow
can be horizontal meaning the message arrived instantly to the receiver or the arrow can go down
to show the message arrived after a certain time or after another event. A message can not go up !
When the sender and the receiver are represented on the diagram the arrow is connected to their
instances. If the sender is missing it is replaced by awhite circle, if thereceiver ismissing itis
replaced by ablack circle.The name of the sender or the receiver can optionally be written next to
thecircle.

Page 42 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDL

process block

sender receiver
run

keypad (™) g i nitMsg

(12,"Hell o worl d\n")

readyMsg

start Msg

run

4>‘ engi ne
]]

An external agent called keypad sendsr un message to process sender .
Processsender sendsi ni t Msg that is considered to be received immedi-
atly toblock r ecei ver. Block r ecei ver repliesr eadyMsg, processsender
sendsst ar t Msg, and block r ecei ver sendsr un to an external agent.

A message is considered received by an agent when it is read from the agent’s message queue; not
when it arrives in the message queue !

Specification & Description Language - Real Time Page 43

1 SDI-I ;i i SDL-RT standard V2.1

msgl

msgl is sent from instance ato

instance b
: msgl msgl I
msgl isreceived from an unknown msgl is sent to an unknown
sender receiver

msgl

msgl
—>

[/ _s

msgl issaved and is still in the
save queue

————

saved msgl is now consumed

6.5 - Synchronous calls

This representation is used when using embedded C++ to show method calls on an object. Object
can be represented by lifelines. Synchronous calls are shown with an arrow to the instance repre-
senting the object. While the object has the focus its lifeline becomes a black rectangle and the
agent lifeline becomes awhite rectangle. That means the execution flow has been transferred to
the object. When the method returns a dashed arrow return to the method caller.

Page 44 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

process object
key board ’ myPhoneBook:PhoneBook
set _URL

("http://ww. sdl -rt.org")

Processkeyboar d calls method set _URL from myPhoneBook object that is
an instance of PhoneBook class.

6.6 - Sate

A lifeline represents a process and depending on itsinternal state a process reacts differently to
the same message. It isinteresting to represent a process state on its lifeline. It isalso interesting
to represent aglobal state for information. In that case the state symbol covers the concerned
instances. In both cases the same symbol is used.

Sate symbol

Specification & Description Language - Real Time Page 45

1 SDI- SDL-RT standard V2.1

Example:
process process
[l | [sve
idle
R
conReq >

conConf

L connect ed > < connect ed >
L] L]

Processserver goestoi dl e state. Processcal | er inits start transition
sendsaconReq to server and goesto statei dl e. Processser ver returns
an conConf message and goesto connect ed state. When conConf message
isreceived by processcal | er it also movesto connect ed state.

Page 46 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

6.7-Timers

Two symbols are available for each timer action depending if the beginning and the end of the
timer are connected or not. The timer name is by the cross and timeout value is optional. When
specified the timeout value unit is not specified; it is usually RTOS tick counts.

<ti mer nanme> <ti mer name> <timer name>
[(<timer time>)] [(<timer time>)] [(<timer time>)]

Timer start connected Timer stop unconnected Timeout unconnected

<ti mer nanme> <tinmer nane> <ti mer nanme>
[(<timer time>)] [(<tinmer tinme>)] [(<timer time>)]

Timer start unconnected Timer stop connected Timeout connected

.

<timer name>
[(<timer time>)]

Timer restart connected

Specification & Description Language - Real Time Page 47

1 SDI- SDL-RT standard V2.1

Examples:
process process
caller server
idle
conRe
g |
t ConReq
% (100)
< idle >
< conConf
%< t ConReq
< connect ed > < connect ed >

]]

Processcal | er triesto initiate connection with conReq message. At the
sametimeit startstimer t ConReq S0 that if no answer isreceived it will
retry connecting. If an answer is received the timer is cancelled and process
cal | er goesto state connect ed.

Page 48 Specification & Description Language - Real Time

SDL-RT standard V2.1

process process
caller server
idle
conReq
|
t ConReq
(100)
< connecting
conReq
|
t ConReq

(100)

< connecting

INLRRREA

< unconnect ed

E—

Processcal | er triesto initiate connection with conReq message. Since it
receives no answer after two triesit gives up and goes to unconnected state.

6.8 - Timeinterval

To specify atime interval between two events the following symbol is used.

<time constraint>

Time constraint syntax is the following:

» absolute timeis expressed with an @ up front the time value,

Specification & Description Language - Real Time

Page 49

1 SDI-I ;i i SDL-RT standard V2.1

» relativetimeis expressed with nothing up front its value,

e timeinterval isexpressed between square brackets,

e timeunit is RTOS specific -usually tick counts- unless specified (s, ms, us).
Noteit is possible to use time constraint on a single MSC reference.

Absolute time can also be specified with the following symbol:

>

<absolute tine value> .-

Examples:
Table 1. Examples of time constraint expressions
Expression Meaning
1. 3ns takes 1.3 msto do
[1,3] takes aminimum of 1 to amaximum of 3 time units

@ 12. 4s,14.7s] | should not occur before absolute time 12.4 s and should not finish after
absolutetime 14.7 s.

<5 takes less than 5 time units
process @4Ss process
et] - -
o rdle
A kR
wor kReq >
[0, 0X02FF]

§

wor kResp

Processser ver reaches statei dl e at absolute time 34 Sec.

Processcl i ent request process server to compute some work in less than
O0x02FF time units.

Page 50 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

process process

[0, 200nE] % _____ _< Connect i ng >

]]

Connect i ng MSC should take |ess than 200mS.

6.9 - Coregion

Coregion is used whenever the sequence of events does not matter. Events in a coregion can hap-
pen in any order. The coregion symbol replaces the lifeline instance.

R
|
|
|
|
|
|
|

R

Coregion symbol

Example:

process

controller

st opEngi ne -

di splaylnfo >

Processcontrol | er
sends st opEngi ne and di spl ayl nf o or
sends di spl ayl nf o and st opEngi ne.

Specification & Description Language - Real Time Page 51

1 SDI-I ;i i SDL-RT standard V2.1

6.10 - MSC reference
MSC reference allows to refer to another MSC. The resulting MSC is smaller and more legible.

C <MsC name> >

M SC reference symbol

A reference concerns the connected instances. Aninstance is connected if itslifeline disappearsin
the symbol. An instance is not connected if it goes over the reference symbol.

Page 52 Specification & Description Language - Real Time

SDL-RT standard V2.1

SDL

Example:

process

caller

< connect ed

process

caler

Connecting MSC

process
idle
conRe
g
t ConReq
%g (100)
le >
Conf
< conCon
%< t ConReq

N

process

server

Connecti ng >
sendDat a
.
sendDat a
-

]

Dat aTr ansfer MSC

]

TheDat aTr ansf er MSC startswith areferenceto Connect i ng MSC. That
means the scenario described in Connect i ng MSC is to be done before the
rest of the Dat aTr ansf er MSC occur.

Specification & Description Language - Real Time

Page 53

1 SDI-I ;i i SDL-RT standard V2.1

6.11 - Text symbol
The text symbol contains data or variable declarations if needed in the MSC.

<any C | anguage decl arati ons>

6.12 - Comment

Asits name states...

| Free text to
——{conment a con-
|nected synbol .

Comment symbol

6.13 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Examples:

* Say hi to your friend */
printf("Hello world !'\n");
for (i=0;i<MAX;i++)

{

newString[i] = oldString[i];

Page 54 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

unsi gned char *full Data, *data;
int | engt h; |

process process

caller server

< Connecti ng >

sendDat a

(Tength, data) >
F—_— = — — _
mencpy(| full Dat a
ful | Dat a, poi nter points
dat a, at the end of
l engt h) ; | buffer.
Lo

]]

Dat aTr ansfer MSC

The action symbol contains standard C instructions related to data declarations.

6.14 - High-level M SC (HM SC)

High level MSC diagram is a synthetic view of how MSCs relate to each other. It isonly afew
symbols: start, stop, aternative, parallel, state or condition, and MSC reference.

VA w

Parallel Alternative
MSC reference State or condition

Specification & Description Language - Real Time Page 55

NTIRT,

SDL-RT standard V2.1

The SDL-RT HM SC starts with the start symbol and ends with the stop symbol. The parallel sym-
bol means the following connected path will be executed in parallel. The Alternative symbol
means one and only one of the connected path is executed. Whenever two paths meet again the
path separator symbol isto be repeated. That meansif a parallel symbol is used that creates two
different paths, the parallel symbol should be used when the path merge back.

Symbols are connected with lines or arrowsiif clearer. A symbol is entered by its upper level edge

and leaved by any other edge.

Example:

di sconnect ed

(conFail ed > (conSucceeded >

(supervising)

— D

< dat aTr

ansfer)

(D

(di sconnect)

The system startsin di sconnect ed state. Connection attempts are made,
either the conFai | ed scenario or the conSucceeded scenario is executed. If
conSucceeded isexecuted super vi si ng and dat aTr ansf er are executing
in parallel. They merge back to di sconnect and end the HMSC scenario.

Page 56 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

7 - Data types

The data types, the syntax and the semantic are the ones of ANSI C and C++ languages. In order
to ease readibility in the rest of the document, the expression ' C code’ implicitly means’ ANSI C
and C++ code'. Thereisno SDL-RT predefined datatypes at all but just some keywords that
should not be used in the C code. Considering the SDL-RT architecture and concepts surrounding
the C code some important aspects need to be described.

7.1 - Type definitions and headers
Types are declared in the text symbol:

<Any C type declaration >

Types declared in an agent are only visible in the architecture below the agent.

7.2 -Variables

Variables are declared after the type definitions in the same text symbol.

<Any C gl obal variable definition >

<Any C type definition >

Variables declared in an agent are only visible in the architecture below the agent. For example
global variables are to be declared at system level. A variable declared in ablock level isnot seen
by an upper level block. Variables declared in an SDL-RT processin atext symbol areloca to the
process. They can not be seen or manipulated by any other process.

7.3 - C functions

SDL-RT internal C functions are to be defined through the SDL-RT procedure symbol. An SDL-
RT procedure can be defined graphically in SDL-RT or textually in C. When defined in C the pro-
cedure call symbol should not be used. A standard C statement in an action symbol should be
used.

7.4 - External functions

External C functions can be called from the SDL-RT system. These should be prototyped in the
system or in an external C header. It isup to an SDL-RT tool to gather the right files when compil-
ing and linking.

Specification & Description Language - Real Time Page 57

1 SDI-I ;i i SDL-RT standard V2.1

8 - Object orientation

8.1 - Block class

Defining a block class alows to use the same block several timesin the SDL-RT system. The
SDL-RT block does not support any other object oriented features. A block class symbol isa
block symbol with a double frame. It has no channels connected to it.

<bl ock cl ass nane>

A block class can be instantiated in ablock or system. The syntax in the block symbol is:
<bl ock instance name>: <bl ock cl ass nane>

Messages come in and go out of a block class through gates. In the block class diagram gates are
represented out of the block class frame. When a block classis instantiated the gates are con-
nected to the surrounding SDL-RT architecture. The messages listed in the gates are to be consis-
tent with the messages listed in the connected channels.

—————————————————

<bl ock instance nane>:
<bl ock cl ass nane>

_‘_______

<gate nanme>

Page 58 Specification & Description Language - Real Time

SDL-RT standard V2.1

SDL

Example:
myBl ockCl ass
Gat e2
my cEnv2
o= > @< aProcess
[si gQut 2] [sigln2] [si gQut 2] [sigln2]
cl nt ernal
0« nyGat el > @< bPr ocess
[sigQutl, [siglni] [si gQut 1] [siglni]
si gQut 3]
Definition diagram of myBlockClass block class
mySystem A [messages,
message9]
chEnvB
[message7]
o |
chEnvA i blockA:myBlockClass 1 blockB
| I chAB
- », myGat el my Gat e2 ’4 -
[sigQut1l, [siglnl] _ , [sigin2] [sigQut 2]
sigut3y T --T-T-T077

blockA is an instance of myBlockClass

8.2 - Process class

Defining a process class allows to:

* have severa instances of the same process in different places of the SDL-RT architec-

ture,
* inherit from a process super-class,
* gpecialize transitions and states.

Specification & Description Language - Real Time

Page 59

1 SDI-I ;i i SDL-RT standard V2.1

A process class symbol is a process symbol with adouble frame. It is has no channels connected
toit.

MyProcess

A process class can be instantiated in ablock or a system. The syntax in the process symbol is:
<process i nstance nane>: <pr ocess cl ass nane>

M essages come in and go out of a process class through gates. In the process class diagram, gates
are represented out of the process class frame. When a process class is instantiated the gates are
connected to the surrounding SDL-RT architecture. The messages listed in the gates are to be con-
sistent with the messages listed in the connected channels. The names of the gates appear in the
process symbol with a black circle representing the connection point.

F—_—— = = = = = = = = = =

<process nane>:
<process cl ass nane>

\
|
|
|
|
|
<gate nane>¢@
)

———— = = =~

N e e e - — o

Since aclassis not supposed to know the surrounding architecture, message outputs should not
use the TO_NAME concept. Instead TO_ID, VIA, or TO_ENV should be used.

Page 60 Specification & Description Language - Real Time

SDL-RT standard V2.1

SIIRT

Example:

upper Level Channel

-t ol
[sigQutl] [siglnl]

(

|

|

|

|
¢

N

‘ myPr ocess |

[si g3]

—_— e — —

/ gate2

- — — = — =

Ve

aProcess: aProcessd ass

gatel

3
|
|
|
|
|
|
)

N e e e - — o

SDL-RT transitions, gates and data are the elements that can be redefined when specializing. In
the sub class, the super classto inherit from is defined with the | NHERI TS keyword in an addi-
tional heading symbol. There are several waysto specialize a process class depending on what is

defined in the super class.

Specification & Description Language - Real Time

Page 61

1 SDI-I ;i i SDL-RT standard V2.1

» If the element is new in the sub class, it is Ssmply added to the super class definition,

a ™
I NHERI TS MySuper C ass;
L

nsg3
myGat el
ey (o0
[msg3]
MySuperClass MyClass
(st abl e)
1
nmsg3 nsgl <
myGat el ‘ ‘
o——>»0 idle unst abl e
[msg3]

An instance of MyClass

Page 62 Specification & Description Language - Real Time

SDL-RT standard V2.1

2

{sDL

* If the element exists in the super class, the new element definition overwrites the one of

the super class,

-
I
L

stabl e

nsg3

myVar = 3;

unst abl e

A

int nyVar;
nmsg3
myVar = 2;
Gatel
o 2 .o
[msg3]
i
MySuperClass
i nt nyVar;
Gatel
o M Lo
[msg3]

nmsg3

nmy Var

= 3;

An instance of MyClass

* A classcan be defined as abstract with the ABSTRACT keyword. It means the class can not
be instantiated asiis; it needsto be specialized. A class can define abstract transitions or

Specification & Description Language - Real Time

Page 63

1 SDI-I ;i i SDL-RT standard V2.1

abstract gates. It means the abstract transition or gate exists but that it is not defined.
Such aclassis obviously abstract and needs to be defined as such.

lI—NIERI?S ;yA;st ;ct_Sup_er Cl_ass_; N
Lo - |
stabl e st abl e
ABSTRACT rrsg3
nsg3
nyGat el
o———>»0 unst abl e
[msg3]
MyA bstractSuperClass MyClass

nyGat el
o————»0 unst abl e
[msg3]

An instance of MyClass

Page 64 Specification & Description Language - Real Time

SDL-RT standard V2.1 SDL

Here comes an example mixing all object oriented concepts and the resulting object:

int rmyVar; 7
stabl e
neg5 < nsg3 ABSTRACT
VI RTUAL nmsg2
o< MGate2 L o \
nyVar = 5; nyVar = 2;
nyGat el
’—" mai I'It
[msg3]
MyA bstractSuperClass
I NHERI TS MyAbst r act Super Cl ass s
char nyQt her Var ; T
stabl e
nsg3 nsg2 nmsgl <
nmyGat e2 nyVar = 3; myQthervVar = a’; \r;tlsi‘lnyGat e2
[msg4] [msg2,
nsgl]
m * m
MyClass

Specification & Description Language - Real Time Page 65

1 SDI-I ;i i SDL-RT standard V2.1

i nt nyVar; ’

char nyQ her Var;

(stabl e)

nyGat el o nsg5 nsg3 neg2 < nmegl
o ————»
s | | | |
nyvar = 5; nyVar = 3; hyCtherVar = 'a’; Cfg‘lnyeat%
nmyGat e2
o —p
.« T e | | | |
msg1] (mai nt > <unstable> (idle > (stabl e)

An instance of MyClass

8.3 - Classdiagram

The SDL-RT class diagram is conform to UML 1.3 class diagram. Normalised stereotypes with
specific graphical symbols are defined to link with SDL graphical representation. All symbolsare
briefly explained in the paragraphs below. Detailed information can be found in the OMG UML
v1.3 specification.

8.3.1 Class
A classisthe descriptor for a set of objects with similar structure, behavior, and relationships.

<cl ass nane>
<cl ass nane>

<attributes>
<oper at1 ons>

Class symbol with

details suppressed Class symbol full rep-

resentation

A stereotype is an extension of the UML vocabulary allowing to create specific types of classes.
If present, the stereotype is placed above the class name within guillemets. Alternatively to this
purely textual notation, special symbols may be used in place of the class symbol.

Page 66 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

<<process>>
<process nane> e <process nane>

<oper at1ons> <operations>

\ y

Class stereotyped as a Class stereotyped as a
process process

Classes are divided in active classes and passive classes. An instance of an active classowns a
thread of control and may initiate control activity. An instance of a passive class holds data, but
does not initiate control. In the class diagram, agents are represented by active classes. Agent type
is defined by the class stereotype. Known stereotypes are: syst em bl ock, bl ock cl ass, proc-
ess, and process cl ass. Active classes do not have any attribute. Operations defined for an
active class are incoming or outgoing asynchronous messages. The syntax is:
<nessage way> <message name> [(<paraneter type>)] [{via <gate nanme>}]
<message way> can be one of the characters:

« >’ for incoming messages,

» ’'< for outgoing messages.

// \

pPhone

call (int) {via gEnv}
hangUp {via gEnv}
conReq {via gSwi tch}
conConf {via gSwitch}
di sReq {via gSwi tch}
di sConf {via gSwitch}

NNNANNV YV

//
Process class pPhone can receive messages
cal I and hangUp through gate genv and

send conReq, conConf , di sReq, di sConf
through gate gSwi t ch.

'/

Specification & Description Language - Real Time Page 67

{sDL

SDL-RT standard V2.1

Pre-defined graphical symbolsfor stereotyped classes are described below:

<<process
cl ass>>

<oper at1 ons>

V' ‘\

<process cl ass

‘<operat|0ns> 4

Classstereotyped as
aclass of process

<<process>>
<process nane>

<oper at1 ons>

Classstereotyped as
aprocess

<<bl ock>>
<bl ock nane>

<oper at1 ons>

Classstereotyped as
ablock

<<bl ock
cl ass>>

<oper at1 ons>

Classstereotyped as
aclass of block

<<syst enp>
<syst em name>

<oper ati ons>

Classstereotyped as
asystem

\ V

Classstereotyped as
aclass of process

4 N

<process nane>

‘<operat|ons> 4

Classstereotyped as
aprocess

<bl ock nane>

Koper at1 ons>

Classstereotyped as
ablock

<bl ock name>

Koper at1 ons>

Classstereotyped as
aclass of block

<<syst emp>
<syst em name>

Koper at 1 ons>

Classstereotyped as
asystem

Page 68

Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

8.3.2 Specialisation
Specialisation definesa’isakind of " relationship between two classes. The most general classis
called the superclass and the specialised classis called the subclass.

<super cl ass
name>

Specialisation link
<subcl ass nane>

Subclassisakind of
superclass

The relationship from the subclass to the superclassis called gener alisation.

8.3.3 Association

An association isarelationship between two classes. It enables objectsto communicate with each
other. The meaning of an association is defined by its name or the role names of the associated
classes. Cardinality indicates how many objects are connected at the end of the association.

<cl ass A nanme>

<class A <cardinality>
rol e nane>

<associ ati on nane>

<cl ass B
rol e nane> <cardinality>

<cl ass B nane>

Specification & Description Language - Real Time Page 69

1 SDI-I ;i i SDL-RT standard V2.1

Tel ephone

term nal *
Each Tel ephone is
connected to one
Switch.ASwitchis

connected to several A
Tel ephone is connected to
' v

A Tel ephone isa
term nal fora

Swi t ch.
switch | 1

Swi t ch

Instances of aclass are identified by the associated class viaits role name.
In the example above an isntance of Swi t ch identifies the instances of Tel ephone it is connected

to viathe namet er mi nal .

8.3.4 Aggregation
Aggregation definesa’isapart of relationship between two classes.

<cont ai ner cl ass
nane>

<rol e nane>

<rol e nanme> <cardinality>

Aggregation link <cont ai ned cl ass
nane>

contained classisapart
of container class

Objects identify each other as described for regular associations (Cf. “ Association” on page 69).

Page 70 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

8.3.5 Composition

Composition is a strict form of aggregation, in which the parts are existence dependent on the
container.

<cont ai ner cl ass
name>

<rol e nane>

<rol e nanme> <cardinality>

Aggregation link <cont ai ned cl ass

nane>

contained classisapart
of container class

Objectsidentify each other as described for regular associations (Cf. “Association” on page 69).

8.4 - Package

A packageis a separated entity that contains classes, agents or classes of agents. It is referenced
by its name.

]

<package nane>

It can contain:
o classes,
* systems,
* blocks,
e classes of blocks,
* processes,
 classesof processes,
* procedures,
» datadefinitions.

Specification & Description Language - Real Time Page 71

1 SDI-I ;i i SDL-RT standard V2.1

8.4.1 Usagein an agent

Agent classes definitions can be gathered in a package. To be able to use classes defined in a
package, an SDL-RT system should explicitly import the package with USE keyword in an addi-
tional heading symbol at system level.

USE <package nane>] — “W

8.4.2 Usagein a classdiagram
Classes defined in a package can be referenced in 2 ways:
 prefix the class name with the package name

<package nane>::<cl ass nane>

<attributes>

<oper at1 ons>

Class<cl ass nane> isdefinedin
package <package nane>

» use the package graphical symbol as a container of the class symbol

myPackage ‘

MySuper d ass

/N

M d ass

myAttribut es
myCOper ati ons

MyCl ass specialises MySuper Cl ass
defined in nyPackage.

Page 72 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

9 - Deployment diagram

The Deployment diagram shows the physical configuration of run-time processing elements of a
distributed system.

9.1 - Node

A nodeisaphysical object that represents a processing resource.

<Node nane>

<Node attri bute>

9.2 - Component

A component represents a distributabl e piece of implementation of a system. There are two types
of components:
» Executable component

<Conponent nane>

E;j <Conponent attri bute>

* File component

<file nane>

Specification & Description Language - Real Time Page 73

NTIRT,

SDL-RT standard V2.1

9.3 - Connection

A connection isaphysical link between two nodes or two executable components. It is defined

by its name and stereotype.

Ant enna

<< <stereotype> >>

<connecti on nane>

Satellite

Page 74

Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

9.4 - Dependency

Dependency between elements can be represented graphically.
* A dependency from a node to an executable component means the executable is running
on the node.
» A dependency from a component to a file component means the component needs the
file to be built.
» A dependency from anodeto afile means that all the executable components running on
the node need the file to be built.

MyNode

My Code. ¢

MyConponent runson MyNode and needs MyCode. ¢ fileto
be built.

Specification & Description Language - Real Time Page 75

NTIRT,

SDL-RT standard V2.1

9.5 - Aggregation

A node can be subdivided of nodes.

VneRack

Net wor kBoar d

Cont r ol Board

VireRack node is subdivided of Newt or kBoar d and Cont r ol Boar d

9.6 - Node and componentsidentifiers

Attributes are used by connected nodes or components to identify each other.

NodeA

<<IP>>

I

NodeAl

nmyNet . i1d=192.168.1.1

|:;:| nyNet . i d=49250

myNet

NodeA2

nyNet .1 d=192. 168. 1. 2

|:;:| nyNet . i d=49251

NodeB
nyNet . d=192. 168. 1. 12

=
|:;:| nmyNet . i d=50000

Cpt B can connect to Cpt Al vianmyNet connection by using NodeAl nyNet . i d
attribute and Cpt A1 nyNet . i d attribute.

Nodes' attribute can be omitted if not needed.

Page 76

Specification & Description Language - Real Time

SDL-RT standard V2.1

SIIRT

10 - Symbols contained in diagrams

The table below shows what symbols can be contained in a specific diagram type.

5|3

BT |2 »

518 I3 3
In the diagrams listed 4 38| 8| 5| B _|s
in this column the 8= g o =| Ele|®| |58 2 &5 3|5
ticked symbolsonthe |& |G @ ﬁ 5|2 g 5 o §’§ B 3= %@é ®
i g |x x IS &S [= T2z T ols o2& 8
right can be used. §88888 %._Bgmq,%g 88885%5

B R e B R

package XIX[X[X|XIX[X[X[X|X|[X|[-]-][X] X |[X - X
class diagram X|X[X[X|X[-|-|-]-]-|-]-]-|X] X |X - X
block class Sl X XXX XXX [X|[X]-]- - - -
process class - - XXX - X - - - -
block - XX |X[X|X[X[X|-]X]|-]- - -
process -l - - x| x e - - -
procedure N N N I I N DG I N B 'q - - -
deployment X X

A diagram listed in the first column can contain the ticked symbols in the other columns. For
example the process symbol can contain the additional heading symbol, the text symbol and all
the behavior symbols. The behavior symbols are all symbols described in “Behavior” on page 14.

Specification & Description Language - Real Time

Page 77

SDL SDL-RT standard V2.1

11 - Textual representation

Storage format follows XML (eXtensible Markup Language standard from W3C available at
http://www.w3.0rg) standard with the following DTD (Document Type Definition):

<!-- Entity for booleans -->
<l-- -->

<IENTITY % bool ean " (TRUE| FALSE) " >

<l-- Entities for symbol types -->

<l-- -->

<IENTI TY % sdl Synbol Types1l "sdl SysDgn¥r ni sdl SysTypeDgnfr ni sdl Bl kDgnfr mj sdl Bl kTypeDgntr
sdl Bl kType| sdl Bl k| sdl Bl kTypel nst | sdl PrcsType| sdl Prcs| sdl PrcsTypel nst ">

<IENTI TY % sdl Synbol Types2 "sdl I nherits]|sdl PrcsTypeDgnfrni sdl PrcsDgnfr ni sdl PrcdDgnfr i

sdl Start| sdl Stat e| sdl | nput Si g| sdl SendSi g| sdl SaveSi g| sdl Cont Si g" >

<IENTI TY % sdl Synbol Types3 "sdl Task| sdl Deci si on| sdl TransOpt | sdl Joi n| sdl Text | sdl Corment |

sdl Text Ext | sdl CnctrQut | sdl Cnctrin|sdl PrcsCreation| sdl St op">

<IENTI TY % sdl Synbol Types4 "sdl I nit Ti ner| sdl Reset Ti mer | sdl SenDecl | sdl Senilrake| sdl SenG ve|
sdl PrcdPr ot o| sdl PrcdDecl | sdl PrcdCal | | sdl PrcdSt art | sdl PrcdRet urn">

<IENTI TY % sdl Synmbol Types "%sdl Symbol Typesl; | %sdl Synbol Types2; | %sdl Synbol Types3; |

%sdl Synmbol Types4; ">

<IENTI TY % nmscSynbol Types1 "mscExt er nal Frm nscl nl i neExpr | mscLi f el i ne| necSemaphor e| nscLost Msg|
nscFoundMsg| nscComment " >

<IENTI TY % nmscSynbol Types2 "mscGenNaneAr ea| nscText | mscAbsTi meConst r| mscCondi ti on| mscMscRef |
nscl nl i neExpr Zone| mscSave" >

<IENTI TY % nscSynbol Types "ogrscSynbol Typesl; | %rscSynbol Types2; ">

<IENTI TY % hnmscSynbol Types "hnscDgnFrnj hmscPar al | el | hmscSt art | hnscEnd| hmscCondi ti on|
hmscMscRef | hnscAl t er nati vePoi nt ">

<IENTI TY % nmscdocSynbol Types "mscdocDgn¥r nm mecdocMscRef | necdocHeader " >

<IENTI TY % um O assSynbol Types "um d assDgn¥r nf uml Pckg| um C ass| um Comment | um Sys| um Bl kd s|
um Bl k| um Prcsd s| unml Prcs" >

<IENTI TY % um Depl Synbol Types "um Depl DgnFr nf um Node| um Conp| um Fi |l e" >

<IENTI TY % um UCSynbol Types "um UCDgnFr m um UseCase| um Act or " >

<IENTITY % Synbol Type " (%dl Synbol Types; | %rscSynbol Types; | ¥hnmscSynbol Types; | “mscdocSynbol Types; |
%um Cl assSynbol Types; | %un Depl Synbol Types; | Yuml UCSynbol Types;)" >

<l-- Entity for lifeline conponent type -->
<l-- -->

<IENTITY % LifelineConponent Type "(nornjsusp| neth|coreg|act)">

<l-- Entity for tine interval type -->
<I-- -->

<IENTITY % Ti el nterval Type "(start|end|tinmeout|constraint)">

<l-- Entity for connector types -->
<l-- -->

<IENTI TY % Connector Type "(voi d|chnl|chnl gate| sdl arrow nmscvoi d| nscgat e| nscar r owgat e| hnscar r oy
um cvoi d| um assoc| uni rol e| un dvoi d) " >

Page 78 Specification & Description Language - Real Time

http://www.w3.org
http://www.w3.org
http://www.w3c.org

SDL-RT standard V2.1 SDL

<!-- Entity for side for connectors -->
<l-- -->

<IENTITY % Side "(n|s|we|x|y)">

<l-- Entity for end types for connectors -->
<l-- -->

<IENTI TY % Connect or EndType "(voi dend|arrow m darrow outltri]outldianfilldiam">

<l-- Entity for link segnent orientation -->
<l-- -->

<IENTITY % Orientation "(h|v)">

<l-- Entity for link types -->
<l-- -->

<IENTITY % Li nkType
"(sbvoi d| dbvoi d| ssvoi d| dsvoi d| chnl | dec| t ransopt | nsg| rt n|i nstcre| assoc| spec| aggr | conp| cnx| dep) ">

<l-- Entity for diagramtypes -->
<l-- -->

<IENTITY % Di agranType "(sys|systype| bl k| bl kt ype| prcs| prcstype| prcd| msc| hnsc| nscdoc| cl ass| usec|
depl)" >

<!-- Elenment for text in synmbols/links/... -->
<l-- -->

<! ELEMENT Text (#PCDATA)>
<! ATTLI ST Text

id CDATA "0"
>
<!-- Element for lifeline synbol conmponents (MsSC specific) -->
<l-- -->
<l-- The "Text" conponent and "width" attribute are only for action synbols -->

<! ELEMENT Li f el i neConponent (Text?)>
<! ATTLI ST Li fel i neConponent
type %.i f el i neConponent Type; #REQUI RED

hei ght CDATA #REQUI RED

col or CDATA "#000000"

wi dt h CDATA "o
>
<l-- Elenment for lifeline synbol time intervals (MSC specific) -->
<l-- -->
<! ELEMENT Ti nel nterval (Text)>

<! ATTLI ST Ti nel nterval
type o%Ti mel nterval Type; #REQU RED
startpos CDATA #REQUI RED
endpos CDATA "1

Specification & Description Language - Real Time Page 79

DL

SDL-RT standard V2.1

of f set CDATA #REQUI RED
col or CDATA " #000000"
>
<l-- Element for spanned lifelines for spanning synbols (MsC specific) -->
<l-- -->
<! ELEMENT SpannedLi fel i ne EMPTY>
<I ATTLI ST SpannedLifeline
lifelineld IDREF #REQU RED
>
<l-- Element for inline expression zones (MSC specific) -->
<l-- -->
<! ELEMENT Zone EMPTY>
<! ATTLI ST Zone
zoneSynbol 1d | DREF #REQUI RED
>
<l-- Element for synmbols -->
<l-- -->
<l-- The "LifelineConponent" and "Tinelnterval" conponents and the "dies" attribute are only for
lifelines synbols -->
<l-- The "Zone" conponent is only for inline expression synbols -->
<l-- The "SpannedLifeline" conmponent is only for spanning synbols in MSC di agrans -->
<! ELEMENT Synbol (Text+, (((LifelineConponent*), (Tinelnterval*)) | ((SpannedLifeline*), (Zone*))

| (Symbol *)))>
<! ATTLI ST Synbol

synbol | d ID #REQUI RED
type YSynbol Type; #REQUI RED
xCent er CDATA #REQUI RED
yCent er CDATA #REQUI RED
fi xedDi nensi ons %bool ean; " FALSE"
wi dt h CDATA " 10"
hei ght CDATA "10"
di es %bool ean; " FALSE"
col or CDATA " #000000"

>

<l-- Element for connectors -->

<l-- -->

<! ELEMENT Connector (Text, Text)>

<I ATTLI ST Connect or
attachedSynbol | d | DREF
type %Connect or Type
i sQut si de %oo0l ean
si de YSi de
posi tion CDATA
endType %Connect or EndType
>
<l-- Elenent for link segnments -->
<l-- -->
<! ELEMENT Li nkSegment EMPTY>

<

ATTLI ST Li nkSegnent
orientation %ientation; #REQU RED

#REQUI RED
#REQUI RED
#REQUI RED
#REQUI RED
#REQUI RED
#REQUI RED

Page 80

Specification & Description Language - Real Time

SDL-RT standard V2.1

SDL

I ength CDATA #REQUI RED
>
<l-- Elenent for links -->
<l-- -->

<! ELEMENT Link (Text, Connector, Connector, LinkSegnent*)>
<! ATTLI ST Li nk

type %.i nkType; #REQUI RED
t ext Segment Num CDATA #REQUI RED
col or CDATA "#000000"
>
<!-- El ement PageSpecification -->
<l-- -->
<l-- Attributes for diagram pages; all dinmensions are centinmetres -->
<! ELEMENT PageSpeci ficati on EMPTY>
<! ATTLI ST PageSpeci fication
pageW dt h CDATA "21"
pageHei ght CDATA "29.7"
topMar gi n CDATA "1.5"
bot t omVar gi n CDATA "1.5"
leftMargin CDATA "1.5"
ri ght Margin CDATA "1.5"
pageFoot er %ool ean; " TRUE"
>
<!-- Elenment for diagrans -->
<l-- -->
<! ELEMENT Di agram (PageSpeci fication, Synbol, Link*)>
<! ATTLI ST Di agram
type %D agr amlype; #REQUI RED
nbPagesH CDATA "1t
nbPagesV CDATA "
cel | Wdt hMm CDATA " 5"

Specification & Description Language - Real Time

Page 81

SDL SDL-RT standard V2.1

12 - Example systems

12.1 - Ping Pong

-
!

This example system is a basic send and receive test.
Firsttwo processes pPing and pPong are created.
pPing receives start message from the envirenment
and the game staris. To slow itdown a bita timer

has been introduced.

*

=
m
9]
%]
=
]
m
T
3
«
o
=]
3
«
[2]
&
=
T

pFing

[star] [
[pong]

internal

[ping

pPong

Ping pong system view

Page 82 Specification & Description Language - Real Time

SDL-RT standard V2.1 SDL

idle

running

idle

start

| ping TO_NAME pPong thait(i()()) | | ping TO_NAME pPong

running running

i

Ping process

Specification & Description Language - Real Time Page 83

SDL SDL-RT standard V2.1

idle

ping

| pong TO_NAME pPing

Pong process

Page 84 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDL

pPong Erw

idle
< idle >

(’_,/start

ping
< running > \

pong

/ < idle >
F——Ctuait(100)

<, running
t—Ctuait

X ping
< running > \

MSC trace of the ping pong system

Specification & Description Language - Real Time Page 85

SDL-RT standard V2.1

12.2 - A global variable manipulation

-

This example shows how to handle a global variable.

Both processes fry o modipy & global variable in their start transition.

To do so they first ke the semaphore dedicated to this global variable.
When they are done they give back the semaphore so thatanother
process can access the variable.

In this example we have puttimers in each process so that they keep the
semaphere long encugh to have a conglict while accessing the

global variable.

Note the global variable is defined in an extzrnal C file and resolved at
link time.

*

extern int myGlobalVariable; T
BINARY mySemaphore
(PRIO,INITIAL_FULL)

Global variable manipulation example system

Page 86

Specification & Description Language - Real Time

SDL-RT standard V2.1 SDL

C)

mySemaphore (FOREYER)

M

myGlobalVWariahle = 5;

myTimer (2000

myTimer

J mySemaphore

Process A

Specification & Description Language - Real Time Page 87

SDL SDL-RT standard V2.1

C

j mySemaphore (FOREYER)

myGlobalVWariahle = 10;

% myTimer (2000

myTimer

J mySemaphore

Process B

Page 88 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

pProcessA | | pProcessB | | Ere | | mySemaphore

%mgtimer‘
<, waiting bl

t.ak
-%mgtimer'
iv
< finished >
%mgtimer‘
<, waiting bl

-%mgtimer'

iv

< finished >

MSC trace of the global variable manipulation

Specification & Description Language - Real Time Page 89

1 SDI-I ;i i SDL-RT standard V2.1

12.3 - Access Control System

This system controls the access to a building. To get in, one need to insert a card and type a code.
The database isin the central block. When starting the system there is no user registered in the
base so the first user needs to be the administrator.

12.3.1 Requirements

[
S

(mHegisi&rUser) (mCardAndCodeOk) (mCardOrCodeko > (mDeleteUser >

0

Either one of the MSCs can be executed indefinitly

Page 90 Specification & Description Language - Real Time

SDL-RT standard V2.1

SDL

k——mDisplay("Enter card")-———
——————mCard{0x35}——
k——mDisplay{"Enter code"}—H
————mKey(0x36)}———
————mKey(0x36)}———
————mKey(0x36)}———

k——mDisplay("Please wait"}——

mOpen

k——mDisplay("Dooropen"}——0H

mClos

thDoor

1<10s

Sandard scenario

Specification & Description Language - Real Time

Page 91

SDL SDL-RT standard V2.1

k——mDisplay("Enter card")-———

——————mCard{0x35}——

k- mDisplay(*Entercode™—| 1\
miey (0x36) !
1<10s
miey (0x36) |
miey (0x37}) XI'I

k——mDisplay("Please wait"}——

ke —mDisplay("Access refused”}—

Sandard refusal scenario

Page 92 Specification & Description Language - Real Time

SDL-RT standard V2.1 SDL

12.3.2 Analysis

(~:pCentral 3
> mCardAndCode() UserFactory
= mAddUser() UserEacto
> mDeleteUser() ‘— "!1’ —
<<create>>
< mAdministrator() getUser(cardld : char®, code : char) : User®
< mEmployes(} newUser(cardld : char*, code - char*) : User®
: 25':8(’3'0 creator
< mKa()
SN—
1. |users
User
isAdministrator - short {frozen}
- cardld : char*
- code - char®
<<create>>(cardld : char*, code : char®, isAdmin : short)
matches(cardld : char®, code - char*) : short
del()

The class diagram shows the relation between pCentral (task) active class and UserFactory and
User passive classes (C++)

Specification & Description Language - Real Time Page 93

DL SDL-RT standard V2.1

12.3.3 Architecture

" .
Access control system.

This system controls the access to a building. Te getin, one need fo insert a card
and type a code. The database is in the cenfral block. When starting the system
there is no user registered in the base so the first user needs to be the
administrator.

MESSAGE
mCardAndCode ({CardA ndCode"),
mAddUser(tCardAndCode"),
mDeleteUser({tCardAndCode");
MESSAGE mAdministrator, mEmployee, mintruder, mOk, mKo;
MESSAGE mOpen, mClose, mDisplay;
MESSAGE mCard{int, char'), mKey(char);

#include "common.h"
#include "MyConsth”
pCentral

[mCardAndCode
mAddUser,
mDelefeUser]

clnternal

[mAdministraho}
mEmployee
mintruder,

mOk,

mkao]

Env pLocal
[mOpen. [mCard

mClose, mKkey]
mDisplay]

The system is made of two tasks. pCentral and pLocal

Page 94 Specification & Description Language - Real Time

SDL-RT standard V2.1

DL

12.3.4 pCentral process

(]\.roid getCardNCode(tCardAndCode® pData, char” card, char‘code@

User *foundUser;
tCardAndCode *pCardAndCode;
char cardld[16], code[16];

userFactory = new UserFactory(); ‘

mAddUser(pCardAndCode)

FetCardNCode(pCardA ndCode, cardld, codel

userFactory->newUser(cardld, code);
free(pCardAndCade);

mOk TO_ID SENDER

mCardAndCode (pCardAndCode)
|

FetCardNCode(pCardA ndCode, cardld, codel

foundUser = userFactory->getUser(cardld, code);
free(pCardAndCade);

foundUser

else

true

foundUser->isAdministrator
false

mintruder TO_ID SENDER mAdministrator TO_ID SENDER

mEmployee TO_ID SENDER

Specification & Description Language - Real Time

Page 95

DL SDL-RT standard V2.1

=)

mDeleteUser(pCardAndCode
)

FetCardNCode(pCardA ndCode, cardld, codel

foundUser = userFactory->getUser(cardld, code);
free(pCardAndCade);

oundUser-=del(}

mKo TO_ID SENDER mOk TO_ID SENDER

12.3.5 getCardNCode procedure

<
S
o
w
@
3]
o
a
=
o
[=]
=8
&
3]
o
a
=
=1
Q
o
Q
o
1]
A
o
¥
-3
0
=
B
A
0
o
a
1]
o0
B
s
7]
[=]
=%
o -
=

strncpy(card, pData->cardld, pData->cardLength);
card[pData->cardLength] = "0';

strncpy(code, pData-=codeld,
pData->codelLength);

code[pData->codelength] = "0";

6

Page 96 Specification & Description Language - Real Time

SDL-RT standard V2.1

DL

12.3.6 pL ocal process

_char *pCardid, *pCodeld, pKey;

int
tCardAndCode “pCardAndCode;
short mode;

lengthCardld, lengthCodeld, lenMsg,lengthKey;

void Display(char "‘msg)

void Display Star{shert numChar)

Display{msgEnterCand)

mode=NORMAL;

=

=

mCard{lengthCardld, pCard|d}

Display{msgEnterCode)

% tCoda(1000)

pCodeld = (char)ATDS_MALLOC(CODE_SIZE);
lengthCedeld = 0;

=

Specification & Description Language - Real Time

Page 97

DL

SDL-RT standard V2.1

| mKey (pKey)

lengthCeodeld++;

*(pCodeld+lengthCodeld) = pKey;

engfrj'@:deLX
d

== CODE_SIZE

else

>|< tCade

| DisplayStar(lengthCodeld) ||

Display{msgPleaseWait)

waitCode

lenMsg = sizeof(iCardAndCode);

pCardAndCode-=cardld = pCardid;

pCardAndCode-=>codeld = pCodeld;

pCardAndCode = (iCardAndCode *) RTDS_MALLOC(lenMsg);
pCardAndCode-=cardLength = lengthCardid;

pCardAndCode- »codelLength = lengthCodeld;

Display{msgEnterCand)

4}

ADD LSER

NORMAL
mCardAndCode (| mAddUser(
pCardAndCode) pCardAndCode)

TO_MAME pCentral

TO_MAME pCentral

m

mKey(pKey)

DELETE_USER

mDeleteUser(
pCardAndCode)
TO_MAME pCentral

ADD_USER_KEY

DELETE_USER_KEY

mode = ADD_USER;

mode = DELETE_USER;

else

| made = NORMAL;

Display{msgEnterNewCard)

Display{msgEnterCardToDeleie)

Page 98

Specification & Description Language - Real Time

SDL-RT standard V2.1

DL

mEmployee

mAdministrator

| mintruder

Display{msgDoorCpen)

Display{msgAdmin}

Display{ msglnvalidCardCrCode)

mOpen TO_ENV
% tDoor(1000)

mClose TO_ENV

Display{
msgEnierCard)

mode=NORMAL;

mOk

|| Display{msgOk) ||

mKo

Display{msgkao)

> tDisplay (300)
displaying

}t{ tDispl.lay(m) |

displaying

displaying

tDisplay
mode = NORMAL;

Display{ msgEnterCard)

Specification & Description Language - Real Time

Page 99

SDL SDL-RT standard V2.1

12.3.7 Display procedure

#include "string.h”
char *pMsg;
int lenMsg;

D

lenMsg = strlen{msg);
pMsg = (char*)malloc(lenMsg);
strepy(pMsg,msg);

[
mDisplay(lenMsg, pMsg) TO_ENV

®

Page 100 Specification & Description Language - Real Time

SDL-RT standard V2.1 SDL

12.3.8 DisplayStar procedure

#include "string.h”
char *pMsg;
shorti;

@

pMsg = (char*)mallec(numChar);
for (i=0sicnumChar;i++)
pMsgli]="";

mDisplay(numChar, pMsg) TO_ENV

®

Specification & Description Language - Real Time Page 101

SDL

SDL-RT standard V2.1

12.3.9 Deployment

Underground

bNetid="192.168 1.1"

<|P==bNet.

ByTheDoor

Y

pCentral
bNetid=50000

bNetid="192.168 2 .49

Y

pLocal
bNetid=50000

The components communicate through |P

Page 102

Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

13 - Differenceswith classical SDL

Itisdifficult to list al the differences between SDL-RT and SDL even though an SDL developer
would understand SDL-RT and vice versa. Still to be able to clearly state the differences between
these languages we will pinpoint the main differences in the paragraphs below.

13.1 - Datatypes

Thisisthe most significant difference between SDL and SDL-RT. Classical SDL hasits own data
types and syntax where SDL-RT basically uses ANSI C language. Some symbols have a specific
syntax with SDL-RT since there is no C equivalent instruction such as output, input, save, or
semaphore manipulations.
The advantages are obvious:

 the syntax is known by all real time developers,

* itimplicitly introduces the concept of pointers that does not exist in SDL,

* it easesintegration of legacy code where it is quite tricky to do from classical SDL,

» and last but not least it makes code generation out of SDL-RT quite straightforward.

13.2 - Semaphores

Semaphore isakey concept in real time systems that classical SDL misses. Specific semaphore
symbols have been introduced in SDL-RT to answer the real time developer needs.

13.3 - Inputs

Classical SDL has nice concepts when it comes to dealing with message exchanges. But these
concepts are not so interesting in real time development and are quite tricky to implement on a
real target or operating system. That iswhy SDL-RT has removed the following concepts:
enabling conditions when receiving a message, internal messages, two levels priority messages.

13.4 - Names

Classical SDL uses exotic names for some well known concepts such as "signal” where it is basi-
cally related to a"message”. Since "message” isthe usual name in Real Time Operating Systems
SDL-RT uses the same term.

When it comes to object orientation classical SDL talks about "type" instead of the usual "class'
term. SDL-RT uses the common developer word "class’.

13.5 - Object orientation

Classical SDL uses "virtual", "redefined", and "finalized" when it comes to object oriented con-
cepts. For example a super class should specify atransition is "virtual" so that the sub classis

Specification & Description Language - Real Time Page 103

1 SDI-I ;i i SDL-RT standard V2.1

allowed "redefine" or "finalize" it. Thisis C++ like but actually quite painful when it comesto

write and does not make things any clearer. SDL-RT takesthe Javanotation instead where thereis
no need to specify anything to be able to redefine it in a sub class.

Page 104 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

14 - Memory management

Real time systems need to exchange information. The best way to do so isto have areserved
chunk of shared memory that several tasks can access. SDL-RT implicitly runs on such an under-
lying architecture since it supports global variables and exchanges message parameters through
pointers. That raises memory management rules to follow to ensure a proper design.

14.1 - Global variables

SDL-RT processes can share global variables. Thisisvery powerful but also very dangerous since
the data can be corrupted if manipulated without caution. It is strongly recommended to use sema-
phores to access global variables to be sure data is consistent. An example of such adesignis
given later in this document.

14.2 - M essage parameters

Parameters of a message are passed through a pointer. Thisimplies the data pointed by the send-
ing process will be accessible by the receiving process. Therefore a good design should meet the
following rules:
» Sending processes allocate specific memory areas to store parameters,
* Oncethe message is sent the parameter memory area should never be manipulated again
by the sending process,
» Receiver processes are responsible for freeing memory containing message parameters.

Specification & Description Language - Real Time Page 105

NTIRT,

SDL-RT standard V2.1

15 - Keywords

The following keyword have a meaning at in some specific SDL-RT symbols listed below:

keywords concerned symbols
Task definition
PRI O Task creation
Continuous signal
TO_NAME
TO ID
TO_ENV Message output
VIA
FOREVER . .
NO VA T semaphore manipulation
>! <! >:| <:| ! =, ==
true, false, decision branches
el se
USE
MESSAGE

MESSAGE LI ST
STACK

additional heading symbol

Table2

: Keywordsin symbols

Page 106

Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

16 - Syntax

All SDL-RT names must be a combination of aphabetical characters, numerical characters, and
underscores. No other symbols are allowed.

Examples:

myPr ocessNanme
ny_procedur e_nane
bl ock_1

_semaphor eNane

Specification & Description Language - Real Time Page 107

1 SDI-I ;i i SDL-RT standard V2.1

17 - Naming convention

Since some SDL-RT concepts can be reached through their names (processes, semaphores) each
name in the system must be unique. This will make the design more legible and ease the support
of SDL-RT in atool.

It is suggested to use the following convention for names:

block names should start with'b’,

process names should start with 'p’,

timer names should start with 't’,

semaphore names should start with'’'s’,

global variables should start with'g’.

Page 108 Specification & Description Language - Real Time

SDL-RT standard V2.1 1 SDLI ;i i

18 - Lexical rules

A subset of the BNF (Backus-Naur Form) is used in these pages :
<traditional English expression> asit says...

[<stuff>] stuff is optional
{<stuff>}+ stuff is present at |east one or more times
{<stuff>}* stuff is present O or more times

Specification & Description Language - Real Time Page 109

1 SDI-I ;i i SDL-RT standard V2.1

19 - Glossary

ANSI American National Standards Institute

BNF Backus-Naur Form

ITU International Telecommunication Union

MSC M essage Sequence Chart

OMG Object Management Group

RTOS Real Time Operating System

SDL Specification and Description Language

SDL-RT Specification and Description Language - Real Time
UML Unified Modeling Language

XML eXtensible Markup Language

Page 110 Specification & Description Language - Real Time

http://www.omg.org
http://www.itu.int
http://www.ansi.org
http://www.uml.org
http://www.sdl-forum.org
http://www.sdl-rt.org
http://www.w3.org

SDL-RT standard V2.1 1 SDLI ;i i

20 - M odifications from previousreleases

20.1 - Semaphore manipulation

20.1.1V10toV1l
The semaphore take now returns a status that indicates if the take attempt timed out or was suc-
cessfull. The semaphore lifeline gets grayed when the semaphore is unavailable.

20.2 - ODbject orientation

20.2.1V11toV1z2
There has been an error in the object orientation chapter: it is not possible to declare a process
classor ablock classin ablock class definition diagram.

20.2.2V1.2toV2.0

» UML class diagram has been introduced
e UML deployment diagram has been introduced
* Object creation symbol introduced in the behavior diagram

20.3 - M essages

20.3.1V11toV1z2
» Messages now needs to be declared.
» Message parameters are now typed with C types.
» Parameter length can be omited if the parameter is structured. Then the length isimplic-
itly the sizeof the parameter type.
» The VIA concept has been introduced.

20.3.2V20toV21l
» Messages can have multiple parameters. Declaration, inputs, and outputs have changed.

20.4-MSC

204.1V11toV1z2
» Saved messages representation introduced.

Specification & Description Language - Real Time Page 111

1 SDI-I ;i i SDL-RT standard V2.1

20.5 - Task

20.5.1V12toV20
STACK parameter has been added as a parameter when creating a task.

20.6 - Organisation

20.6.1V12toV20
Chapters have been re-organized.

Page 112 Specification & Description Language - Real Time

SDL-RT standard V2.1

21 - Index

A

Action

symbol 24
Action symbol

MSC symbol 54
Additional heading symbol 32
Agents9
Aggregation

class 70

node 76
Association 69

Block
class 58

C

call

procedure 27
Cardinality 69
channels 11
Class

active 67

block 58

definition 66

passive 67

process 59
Comment 29

MSC symbol 54
Component 73
Composition 71
Connection 74
Connectors 28
Continuoussignal 23
Coregion 51

creation
task 27

D

Data type

difference with classical SDL 103
Datatypes57
Decision 24
Declaration

message 37

procedure 36

process 35

semaphore 38

timer 38

variables 31
Dependency 75
Diagram

architecture 9

behavior 14

class 66

communication 11

contained symbols 77

deployment 73

MSC 39
Distributed system 73

E

else
decision 25
keyword 106
Environment
definition 9
message output 19
Extension 30

Specification & Description Language - Real Time

Page 113

NTIRT,

SDL-RT standard V2.1

=

false
decision 25
keyword 106
transition option 28
FOREVER
keyword 106

G

Generalisation 69
give
semaphore 26

HMSC 55

if 24
ifdef 28
Input
difference with classical SDL 103

message 16
instance
MSC 39

K

Keywords 106

L

Lexical rules 109

M

Memory
management 105
MESSAGE
keyword 106
M essage
communication principles 11
declaration 37
input 16
list 37
memory management 105
MSC 42
output 17
parameters 105
save 23
MESSAGE_LIST
keyword 106
MSC 39
action 54
agent instance 39
comment 54
reference 52
semaphore 40
text symbol 54

N

Naming
convention 108
difference with classical SDL 103
syntax 107
NO_WAIT
keyword 106
Node 73

O

Object

difference with classical SDL 103
OFFSPRING

procedure 27

Page 114

Specification & Description Language - Real Time

SDL-RT standard V2.1

output 17

P

Package 71
PARENT
procedure 27
PRIO
continuous signal 24
keyword 106
Procedure
cal 27
declaration 36
return 31
start 31
Process
behavior 14
class 59
declaration 35
priority 35

R

reference
MSC 52
return
procedure 31

S

save 23
SDL-RT
Lexica rules 109
Semaphore
declaration 38

difference with classical SDL 103

give 26
global variable 105
MSC 40
take 25
SENDER

procedure 27
Specialisation 69
STACK

keyword 106
Stack

size definition 32
Start

procedure 31

symbol 14

timer 26
State 14

MSC 45
Ster eotype 66
Stop

symbol 15

timer 26
Storage format 78
Symbol

additional heading 32

indiagram 77

ordering 32

text 31
Synchronous calls

MSC 44
System 9

T

take

semaphore 25
Task

creation symbol 27
Text

MSC symbol 54

symbol 31
Timeinterval

MSC 49
Timer

declaration 38

MSC 47

start 26

stop 26
TO_ENV 19

keyword 106

Specification & Description Language - Real Time

Page 115

NTIRT,

SDL-RT standard V2.1

TO ID 18
keyword 106
TO_NAME 19
keyword 106
Transition option 28
true
decision 25
keyword 106
transition option 28

U

USE
keyword 106

V

VIA 20
keyword 106

X

XML
data storage 78

Page 116

Specification & Description Language - Real Time

	1 - Introduction
	2 - Architecture
	2.1 - System
	2.2 - Agents

	3 - Communication
	4 - Behavior
	4.1 - Start
	4.2 - State
	4.3 - Stop
	4.4 - Message input
	4.5 - Message output
	4.5.1 To a queue Id
	4.5.2 To a process name
	4.5.3 To the environment
	4.5.4 Via a channel or a gate

	4.6 - Message save
	4.7 - Continuous signal
	4.8 - Action
	4.9 - Decision
	4.10 - Semaphore take
	4.11 - Semaphore give
	4.12 - Timer start
	4.13 - Timer stop
	4.14 - Task creation
	4.15 - Procedure call
	4.16 - Connectors
	4.17 - Transition option
	4.18 - Comment
	4.19 - Extension
	4.20 - Procedure start
	4.21 - Procedure return
	4.22 - Text symbol
	4.23 - Additional heading symbol
	4.24 - Object creation symbol
	4.25 - Symbols ordering

	5 - Declarations
	5.1 - Process
	5.2 - Procedure declaration
	5.2.1 SDL-RT defined procedure
	5.2.2 C defined procedure

	5.3 - Messages
	5.4 - Timers
	5.5 - Semaphores

	6 - MSC
	6.1 - Agent instance
	6.2 - Semaphore representation
	6.3 - Semaphore manipulations
	6.4 - Message exchange
	6.5 - Synchronous calls
	6.6 - State
	6.7 - Timers
	6.8 - Time interval
	6.9 - Coregion
	6.10 - MSC reference
	6.11 - Text symbol
	6.12 - Comment
	6.13 - Action
	6.14 - High-level MSC (HMSC)

	7 - Data types
	7.1 - Type definitions and headers
	7.2 - Variables
	7.3 - C functions
	7.4 - External functions

	8 - Object orientation
	8.1 - Block class
	8.2 - Process class
	8.3 - Class diagram
	8.3.1 Class
	8.3.2 Specialisation
	8.3.3 Association
	8.3.4 Aggregation
	8.3.5 Composition

	8.4 - Package
	8.4.1 Usage in an agent
	8.4.2 Usage in a class diagram

	9 - Deployment diagram
	9.1 - Node
	9.2 - Component
	9.3 - Connection
	9.4 - Dependency
	9.5 - Aggregation
	9.6 - Node and components identifiers

	10 - Symbols contained in diagrams
	11 - Textual representation
	12 - Example systems
	12.1 - Ping Pong
	12.2 - A global variable manipulation
	12.3 - Access Control System
	12.3.1 Requirements
	12.3.2 Analysis
	12.3.3 Architecture
	12.3.4 pCentral process
	12.3.5 getCardNCode procedure
	12.3.6 pLocal process
	12.3.7 Display procedure
	12.3.8 DisplayStar procedure
	12.3.9 Deployment

	13 - Differences with classical SDL
	13.1 - Data types
	13.2 - Semaphores
	13.3 - Inputs
	13.4 - Names
	13.5 - Object orientation

	14 - Memory management
	14.1 - Global variables
	14.2 - Message parameters

	15 - Keywords
	16 - Syntax
	17 - Naming convention
	18 - Lexical rules
	19 - Glossary
	20 - Modifications from previous releases
	20.1 - Semaphore manipulation
	20.1.1 V1.0 to V1.1

	20.2 - Object orientation
	20.2.1 V1.1 to V1.2
	20.2.2 V1.2 to V2.0

	20.3 - Messages
	20.3.1 V1.1 to V1.2
	20.3.2 V2.0 to V2.1

	20.4 - MSC
	20.4.1 V1.1 to V1.2

	20.5 - Task
	20.5.1 V1.2 to V2.0

	20.6 - Organisation
	20.6.1 V1.2 to V2.0

	21 - Index

