specification & description language - real time

@® Graphical language to specify
and design real time
and embedded software

| oviect

Date ® March 25th, 2003

Version ® 20

Reference @ http://www.sdl-rt.org ’

1 SDI- SDL-RT standard V2.0

Page 2 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

Introduction = - = - === cmcmmme e e 7
Architecture--- - - - - - - oo e e 9
Y (< o ST PP UPPR PRSP 9
L6 (< TSP UPRTPRRRTPIN 9
CoOmMMUNICALION == = - == = - == s o m s o e e oo 11
Behavior ------- - m e oo 14
= 1 TR 14
S (<SPS P PP PRSP 14
S 0 o ST SR 15
IMIESSAgE INPUL ...ttt sttt b et b et e e e e e b e bt b e se e e bt e e e e e e et et e nbenbeneennis 16
eSSz o T o0 11 o | PR 17
Toaqueueld 17
To aprocess name 18

To the environment 19
Viaachannel or agate 19

IMIESSAgE SAVE.......ccureeeeeeree st et ettt s e s e e st e s e e n e e s e e e n e e saeesane e ame e er e e nnnesne e neenneenrneea 22
CONLINUOUS SIONEeevieieeieeieeste ettt e te e ete e bessaesseesseeseesaeesseensesseenseensesseesseensennnans 22
o (o) o SO TRPRPSPSRR 23
D=0 o o TS 23
SEMAPNOTE TAKE ...ttt et e s e et eeaeeste et e saeesseensesneesteensesneesennnans 24
SEMBPNOIE GIVE..... ittt bbbt b e bt b et e et et e bbb e ne e 25
BT G = SRR 25
QIS S (] o TSRS 25
QLIS Qe == 11 oo PRSP 26
010 o (U1 0= o || O 26
(O01 0] 07 oi (0] £ TP PR PR 27
TrANSITION OPLION ...ttt b e bbbt e se e e e e e e e e e ne e 27
(©0 001007 o | USRS 28
= 1 T o TSRS 29
0100 (U1 L = SR 30
e 0Te= o (U1 L= £ U] o SR 30
TEXE SYMIDIOL ...t e b et eere e re e e ae e aeenaesneenrennnans 30
Additional heading SYMDOIooiiiii e 31
Object Creation SYMDOL...........coiiiieeee e 31
Y100 £ 0T o [= 1 oo OSSPSR 33
DeclarafionS - - = === ---ccccmmmmoc e n e m e e 34
PIOCESS.....ce ettt h e e e e b et e b e e e b e e e b et e enr e e e nneeeneeenes 34
ProCedure dEClaralion...........coeeieieiieresie sttt sttt e e e ns 35
SDL-RT defined procedure 35
C defined procedure 36
Sz o LTS P SRR 36
11 £ PSSR 37
SEMBPNOIES ...ttt bbbt h et e b e b e bt bt bt Rt ae e e e et e e e e e ne e 37
Y SR e e 38

Specification & Description Language - Real Time Page 3

1 SDI-I ;i i SDL-RT standard V2.0

AGENT INSIANCE. ...ttt et e b e b bt s bt bt et et et et e e e s be b e neenne e 38
SEMAPNOre FEPIESENEAIONc.vieieie ettt e et e e b e e sse e e b e e ssaeeneesseeeseesrneans 39
Semaphore MANIPUIBLIONS..........cuiiiiiie ettt e e e e e b e e sseeebeesseeesseesseesnneenreaans 39
IMESSAgE EXCNANGE. ...ttt ettt sttt e et et e b e s bt sb e e bt e st e e e e e e e benaeebenre s 41
SYNCAIONOUS CAIIS ...ttt e s re e ae e e teeneeneenns 43
R = TSP PR U SRR OPRTPRRRPRN 44
1012 £ R 46
TIME INTEIVEL ...t et b e bbbt et e e b e te st b e 48
(@0 (=0 1o o SRS 50
Y O = = =0 Tor ST 51
QIS Y/ 1 oo S 53
(001 01]107C o TP 53
o o o 53
High-1eVel MSC (HMSC) ..ottt sttt st sbenne s 54
Datatypes ----------cccmcmmem e e e e e e m e e m e 56
Type definitioNS N NEAAEN'Sc.ooiiiee e 56
VAITADIES ...ttt b bRttt b bRt et 56
CIUNCHIONS ...ttt st bt be b e s e st e e et e nb e besbeebenbeeneeneeneeneeneeneas 56
EXIEIN@l TUNCHIONSottt s e s re et e e neesbeeeesreeeeaneens 56
Object orientation ----------------- oo 57
BIOCK ClBSS ...ttt ettt et et e s e ae et esseenteenteeneenneenseeneenreas 57
01015 Y o = SRR 58
(O S SY 0 =0 = OSSR 65
Class 65
Specialisation 68
Association 68
Aggregation 69
Composition 70
S 0= 0 L= PSSR 70
Usagein an agent 71
Usagein aclass diagram 71
Deployment diagram ----------------- - 72
N0 L= RTPRPSPRR 72
(O00T 07010101 o | TR PR PR TRTRO 72
(@00]107= o1 o o PSR PRSUSPSRSRPN 73
7= o< 416 (= 0oy U TSRS PPPRPRPIN 74
L8 [o =0 = 1 o] o IO PR SSTSS PP 75
Node and coOmMpPONENtS IAENEITIEIS........ccceieeie et 75
Symbolscontained indiagrams - ------------------““--------------- 76
Textual representation ----------------“-““““ - oo 77
Examplesystems - - ----- - oo oo 81
PING PONQ ...t e R bRt a e e e e 81
A global variable ManiPUIBLION...........coeiiiiiieii e 85

Page 4 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

ACCESS CONLIOI SYSEEIM. ...ttt e et bbb bt a e se e e e e e e nnenne e 89
Requirements 89
Analysis 92
Architecture 93
pCentral process 94
getCardNCode procedure 95
pLocal process 96
Display procedure 99
DisplayStar procedure 100
Deployment 101
Differenceswith classical SDL - ------------------“----“--- - 102
D= = 1Y 01T PSP PRPRRRN 102
SEMBPINOTES ...t bbb e e e b e s be bt s bt e bt ae et e e e b bbb e nnis 102
T 1 PP RRPRRIN 102
INBITIES. ...ttt ettt e et e e s ae e e et e R e e ae e e b e e e me e e s e e eme e e be e e mn e e ne e eaneeneeenneeneenneenneas 102
(@ o] 1= oo gL o1 1] o T USSP UURTPRPR 102
Memory management - - - - -------- - - - oo oo 104
GlODE VAINADIES.......cceiieeeiece ettt re s 104
IMESSAE PAIAIMELENSeeeeitie ettt ettt ettt s e sse e e e sse e e s be e e sase e e asseeeneeeeseeesbeeesnneeeanneaens 104
Keywords ----------ommmmm oo oo 105
= G e 106
Naming CoNVENtioN - - - - == - = - = - - - o oo o e oo 107
Lexical rules - --------mmmmm e e 108
GloSSarY - - - - - - e oo oo 109
Modificationsfrom previousreleases - - - - - ----------------------------o 110
Semaphore MaNIPUIBLION..........ccviieieeieee st e e e te e e sreeneennesneeneas 110
V10toV11110
(@ o] 1= we g1 o1 i o] o PSS U PP UPTPRPRO 110
V11toV1.2110
V12toV20110
IMTESSATES ...ttt r et nn e r e e 110
V11toV1.2110
Y S 110
V11toV1.2110
L= S SRR 110
V12toV20110
(@ (0= 012 1o o TSRS U PP 111
V12toVvV2.0111
F 0 [R e e 113

Specification & Description Language - Real Time Page 5

1 SDI- SDL-RT standard V2.0

Page 6 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

1 - Introduction

Asitsname states, SDL-RT isbased on SDL standard from I TU extended with real time concepts.
V2.0 introduces support of UML from OMG in order to extend SDL-RT usage to static part of the
embedded software and distributed systems.

SDL has been developed in the first place to specify telecommunication protocols but experience
showed some of its basic principles could be used in awide variety of real time and embedded
systems. Its main benefits are:

* architecture definition,

» graphical finite state machine,

* object orientation.

But SDL was not meant to design real time systems and some major drawbacks prevented it to be
widely used in the industry:

» obsolete data types,

 old fashioned syntax,

* NO pointer concept,

* no semaphore concept.

SDL being agraphical language it is obviously not suited for any type of coding. Some parts of
the application still need to be written in C or assembly language. Furthermore legacy code or off
the shelf libraries such as RTOS, protocol stacks, drivers have C APIs. Last but not least thereis
no SDL compilers so SDL need to be translated into C code to get down to target. So all SDL ben-
efits are lost when it comesto real coding and integration with real hardware and software.

Considering the above considerations areal time extension to SDL needed to be defined that
would keep the benefits of SDL and solve its weaknesses. The smpler the better | SDL-RT was
born based on 2 basic principles:

* Replace SDL datatypesby C,

* Add semaphore support in the behavior diagrams.

UML diagrams have been added to SDL-RT V2.0 to extend SDL-RT application field:

* When it comesto object orientation, UML class diagram brings a perfect graphical rep-
resentation of the classes organisation and relations. Dynamic classes represent SDL
agents and static classes represent C++ classes.

» To handle distributed systems, UML deployment diagram offers a graphical representa-
tion of the physical architecture and how the different nodes communicate with each
other.

Theresult, SDL-RT, isa
* simpler,
 object oriented,
» graphical language,
» combining dynamic and static representations,

Specification & Description Language - Real Time Page 7

1 SDI-I ;i i SDL-RT standard V2.0

» supporting classical real time concepts,
» extended to distributed systems,
» based on standard languages.

Page 8 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

2 - Architecture

2.1 - System

The overall design is called the system and everything that is outside the system is called the
environment. Thereis no specific graphical representation for the system but the block represen-
tation can be used if needed.

2.2 - Agents

An agent is an element in the system structure. There are two kinds of agents: blocks and proc-
esses. A system is the outermost block.

A block isastructuring element that does not imply any physical implementation on the target. A
block can be further decomposed in blocks and so on allowing to handle large systems. A block
symbol isasolid rectangle with itsname in it:

MyBlock

A simple block example.

When the SDL-RT system is decomposed down to the ssmplest block, the way the block fulfilsits
functionality is described with processes. A lowest level block can be composed of one or several
processes. To avoid having blocks with only one processit is alowed to mix together blocks and
processes at the same level e.g. in the same block.

A process symbol is arectangle with cut corners with its namein it:

A simple process example.

A processisbasically the code that will be executed. It is afinite state machine based task (Cf.
“Behavior” on page 14) and has an implicit message queue to receive messages. It is possible to
have severa instances of the same process running independently. The number of instances
present when the system starts and the maximum number of instances are declared between

parenthesis after the name of the process. The full syntax in the process symbol is:
<process name>[(<nunber of instances at startup>, <naxi mum nunber of instances>)]
If omitted default values are 1 for the number of instances at startup and infinite for the maximum

number of instances.

Specification & Description Language - Real Time Page 9

NTIRT,

SDL-RT standard V2.0

‘ MyProcess(0,10)

An exampl e process that has no instance at startup and a maximum of 10 instances.

The overall architecture can be seen as a tree where the leaves are the processes.

MySystem
blockA blockB
processA 1l ‘ ‘processAZ(O,lO)’ blockC ‘ processB1(1,1) ’
‘ processC1 ’ ‘ processC2 ’ ‘ processC3 ’

A view of the architecture tree

When viewing a block, depending on the size of the system, it is more comfortable to only repre-

sent the current block level without the lower agents.

Page 10

Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

3 - Communication

SDL-RT isevent driven, meaning communication is based on message exchanges. A message has
aname and a parameter that is basically a pointer to some data. Messages go through channels
that connect agents and end up in the processes implicit queues.

Channels have names and are represented by a one-way or two-ways arrows. A channel nameis
written next to the arrow without any specific delimiter. The list of messages going in a specific
way are listed next to the arrow between brackets and separated by commas. M essages can be
gathered in message lists, to indicate a message list in the list of messages going through a chan-
nel the message list is surrounded by parenthesis. Note the same message can be listed in both
directions.

channelName
) >
aOneWayChannel example: [messaged.
(messagel istl),
message?]
channelName
aTwoWayChannel example: - >
[message4, [messagel,
messages, message2,
message?] (messagelist1)]

Channels end points can be connected to: the environment, another channel or a process. Graphi-
cally achannel can be connected to ablock but it is actually connected to another channel inside
the block. To represent the outside channels connected to the block at the upper architecture level,
ablock view is surrounded by aframe representing the edge of the block. The upper level chan-
nels connected to the block are then represented outside the frame and channels inside the block
can be connected to these upper level channels. Note a channel can be connected to several chan-
nels. In any case consistency is kept between levels e.g. all messagesin achannel are listed in the
upper or lower level channels connected to it.

Specification & Description Language - Real Time Page 11

NTIRT,

SDL-RT standard V2.0

Example:
Let us consider an SDL-RT system made of two blocks: blockA and blockB.
mySystem A [messages,
message9]
chEnvB
v [message7]
chEnvA chAB
p| DlockA | g p-| blockB
[messagel, [messaged] [messageb,
message2, messaget]
message3]

An example system view

The channels chEnvA and chEnvB are connected to the surrounding frame of the system ny Sys-
t em They define communication with the environment, e.g. the interface of the system. chEnvA
and chAB are connected to bl ockA and define the messages coming in or going out of the block.

chAB
blockA A [messageb,
messaged]
chABD
Y [messaged]
chEnvA ChEnvAC p| DlockC | g chCD p| blockD
[messagel, [message4, [messages,
message2, messagel0, messagel?,
message3] messagell] messagel3]

[messagel4]

Aninner block view

The inner view of block blockA showsit is made of the blocks blockC and blockD and of the pro-
cess processE. chEnvAC is connected to the upper level channel chEnvA and chABD is connected

Page 12

Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

to the upper channel chAB. The flow of messages is consistent between levels since for example
the messages coming in block blockA through chEnvA (messagel, message2, message3) are a'so
listed in chEnvAC.

Specification & Description Language - Real Time Page 13

1 SDI-I ;i i SDL-RT standard V2.0

4 - Behavior

First of all a process has an implicit message queue to receive the messages listed in the channels.
A process description is based on an extended finite state machine. A process state determines
which behavior the process will have when receiving a specific stimulation. A transition is the
code between two states. The process can be hanging on its message queue or a semaphore or run-
ning e.g. executing code.

SDL-RT processes run concurrently; depending on the underlying RTOS and sometimes on the
target hardware the behavior might be slightly different. But messages and semaphores are there
to handle process synchronization so the final behavior should be independent of the RTOS and of
the hardware. Since SDL-RT is open to any C code it is up to the designer to make sure this state-
ment staystrue!

Note that in a state diagram the previous statement is always connected to the symbol upper frame
and the next statement is connected to the lower frame or on the side.

4.1 - Sart

The start symbol represent the starting point for the execution of the process:

D

Sart symbol

The transition between the Start symbol and the first state of the processis called the start transi-
tion. Thistransition is the first thing the process will do when started. During thisinitialization
phase the process can not receive messages. All other symbols are allowed.

4.2 - Sate

The name of the process state is written in the state symbol:

< <state name> >

Sate symbol

The state symbol means the processis waiting for some input to go on, the allowed symbolsto
follow a state symbol are:
* message input
the message could be coming from an external channel, or it could be atimer message
started by the process itself.
* continuous signal

Page 14 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

when reaching a state with continuous signals, the expressions in the continuous signals

are evaluated following the defined priorities. All continuous signal expressions are eval-
uated before the message input !

¢ save
the incoming message can not be treated in the current process state. It is saved until the
process state changes. When the process state has changed the saved messages are
treated first (before any other messages in the queue but after continuous signals).

Some transitions can be valid for several states, the different state names are then listed separated
by acomma. A star ('*’) means all states.

Examples:
, . idle,
idle mai ntenance
| | |

megl msg2 msg1 <a > 0>
In statei dl e msgl can be Messagemsgl can In statesi dl e and
received and nmsg2 is saved. be received in any mai nt enance the
state expression a>0 is

first evaluated.

A processin aspecific state can receive severa types of messages or treat several continuous sig-
nals. To represent such a situation it is possible to have several message inputs connected to the
state or to split the state in several symbols with the same name.

Examples:
(idle (idle ’ (idle
|
sigl si g2 sigl sigl
Two ways of writing in statei dl e,
si gl or si g2 can bereceived.
4.3-3op

A process can terminate itself with the stop symbol.

Specification & Description Language - Real Time Page 15

S TIRT,
X

Sop symbol

Note a process can not kill another process, it can only kill itself.
There isno syntax for that symbol.

4.4 - M essage input

The message input symbol represent the type of message that is expected in an SDL-RT state. It
always follows an SDL-RT state symbol and if received the symbols following the input are exe-
cuted.

<Message name>
[([<data | ength>,]
Kpoi nter on data>)]

Message input symbol

An input has a name and can come with parameters. To receive the parametersit is necessary to
declare at |east one variable that will be assigned to point on the parameters. If the parameter
length is unknown, because the parameters are unstructured data, it is also possible to get the
parameter length assigned to a pre-declared variable.

The syntax in the message input symbol is the following:
<Message nane> [([<data | ength>,] <pointer on data>)]

<dat a | engt h>isavariable that needs to be declared.
<poi nter on data> isavariable that needsto be declared asani nt .

Examples:

| ConReqg(unsi gned char *),
ConConf ,

IMESSAGE \
|
Di sReq(nyStruct *); |

| ong nyDat aLengt h;
unsi gned char *nyDat a;
nmy St ruct *pDat a;

ConReq Di sReq
SwrryDan\;;\Len, ConConf (pDat a)

Page 16 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

4.5 - M essage output

A message output is used to exchange information. It puts datain the receiver’s message queuein
an asynchronous way.

Message output symbol

When a message has parameters, a pointer to the parametersis given. If the parameter is struc-
tured, its length does not need to be specified sinceit isbasically asi zeof of the parameter type.
Otherwiseits length is given as afirst parameter of the output symbol.

The syntax in the message output symbol can be written in several ways depending if the queueld
or the name of the receiver is known or not. A message can be sent to a queue Id or to a process
name or viaachannel or a gate. When communicating with the environment, a special syntax is
provided.

451 Toaqueueld

KVESSage name>

[([<data | ength>,]
IKpoi nter on data>)]
TO I D

K<r ecei ver queue id>

Message output to a queue id

The symbol syntax is:
<nessage nanme>[([<data | ength>,] <pointer on data>)] TO_ID <receiver queue id>
It can take the value given by the SDL-RT keywords:

PARENT The queue id of the parent process.

SELF The queue id of the current process.

OFFSPRI NG The queue id of the last created processif any or NULL if none.
SENDER The queue id of the sender of the last received message.

Specification & Description Language - Real Time Page 17

1 SDI-I ;i i SDL-RT standard V2.0

Examples:
r-- - - - - - - - - - - - — N
|I\/ESSAGE 3
| ConReq(unsi gned char *), |
ConConf ,
| Di sReq(nyStruct *); |
Lo - -
| ong myDat aLengt h;
unsi gned char *myDat a;
nmy St ruct *pDat a;
conReq ConConf TO_ID D sReq
(Tf)5?D gigg\;-) aCal cul at edRecei ver éﬁ::ig:\[?') To1D
ConReg areunstructured There is no parameter Parameter length does
parameters so the length associated with the not need to be specified:
needs to be specified. message ConConf . itisimplicitly

si zeof (nmyStruct).

4.5.2 To a process name

KVESSage name>

[([<data | ength>,]
IKpoi nter on data>)]
TO_NAME

I<r ecei ver nane>

Message output to a process name

The syntax is:

<nessage name>[([<data | ength>,] <pointer on data>)] TO NAME <receiver name>
<recei ver nane> isthe name of aprocessif unique or it can be ENV when simulating and the
message is sent out of the SDL system.

Examples:
ConReq ConReq
(OXFF, ny Dat a) grgy'?&;naELength, nyDat a)
TO_NANE ENV r ecei ver Process
Note:

If several instances have the same process name (several instances of the same process for exam-
ple), the’ TO_NAME’ will send the message to the first created process with the corresponding
name. Therefore this method should no be used when the process name is not unique within the
system.

Page 18 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

4.5.3 To the environment

KVESSage nane>

[([<data | ength>,]
Kpoi nter on data>)]
TO_ENV

<C macro nane>

Message output to environment

The symbol syntax is:

<nmessage hame>[([<data | ength>,] <pointer on data>)] TO ENV <C macro nanme>

<C macr o name> isthe name of the macro that will be called when this SDL output symbol is hit.
If no macro is declared the message will be sent to the environment.

Example:
ConReq IConReq
(OxFF, nyDat a) (nyDat atength, nyDat a)
TO_ENV IMESSAGE_TO HDLC
In this second example the generated code will be:
MESSAGE_TO HDLC(ConReq, nyDat aLengt h, nyDat a)
Note:

When sending data pointed by <pointer on data>, the corresponding memory should be allocated
by the sender and should be freed by the receiving process. This is because this memory areais
not copied to the receiver; only the pointer value is transmitted. So after being sent the sender
should not use it any more.

4.5.4 Viaachannel or a gate
A message can be sent viaa channel in the case of a process or via agate in the case of a process
class.

KVEssage nane>

[([<data | ength>,]

Kpoi nter on data>)]

1A

Ikchannel or gate name>

Message output via a channel or a gate

The symbol syntax is:

<message nane>[([<data | ength>,] <pointer on data>)] VIA <channel or gate nane>
<channel or gate nane> isthe name of the channel or gate the message will go through.

This concept is especially usefull when using object orientation since classes are not supposed to
know their environment; so messages are sent via the gates that will be connected to the surroud-
ing environment when instanciated.

Specification & Description Language - Real Time Page 19

SDL SDL-RT standard V2.0

mySystem A [message?)

chEnvB

Y [messaged]

chEnvA chAB
[messagel] [message?] [message3]- -

[
|
|
|
|
Il
|

- |
|
|
|
|
|
|
|
'

message?2 nessage2
VI A [TO_NAME
chAB processA

With the architecture defined above, both outputs are equivalent.

Page 20 Specification & Description Language - Real Time

SDL-RT standard V2.0 SDL

‘ nmyPr ocess |
[mg2]
cl nternal
;" gate2 T N

cUpper Level

upper Level Channel p-@Jatel
[msgl] |

AN /

2 /

4 /

e /
/ /
nyGat e2
[msg2]

nyGat el

[msgl]

myClass

aProcess sendsnsg2 to nyPr ocess without knowing its name nor its PID

Specification & Description Language - Real Time Page 21

1 SDI-I ;i i SDL-RT standard V2.0

4.6 - M essage save

A process may have intermediate states that can not deal with new request until the on-going job
isdone. These new requests should not be lost but kept until the process reaches a stable state.
Save concept has been made for that matter, it basically holds the message until it can be treated.

<Message nane>

Save symbol

The Save symbol isfollowed by no symbol. When the process changes to a new state the saved
messages will be thefirst to be treated (after continuous signalsif any).

The symbol syntax is:

<message name>

Even if the message has parameters.

Example:
| [|
nmegl nmeg2 meg3 nsg3 megl
< inter ><stable> <stab|e><stable>
Let’sconsider the above pro- msg3, nsg2, negl. msg3 will Sincensg3 has been saved it
cessingtatei nt er torecelve besaved, nsg2 will makethe will first be treated and
the following messages: process go to state st abl e. finally nsg1.

4.7 - Continuous signal

A continuous signal is an expression that is evaluated right after a process reaches a new state. It
Is evaluated before any message input or saved messages.

<condi tion
expressi on>

Continuous signal symbol

The continuous signal expression to evaluate can contain any standard C expression that returns a
C true/false expression. Since an SDL state can contain several continuous signal a priority level

Page 22 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

needs to be defined with the PRI O keyword. Lower values correspond to higher priorities. A con-
tinuous signal symbol can be followed by any other symbol except another continuous signal or a
message input. The syntax is:

<C condi ti on expression>

PRI O <priority |evel >

Example:

< idle >
[|
msgl < < a>5 > <b<10) ¥ (c!(>
PRI O 2 PRIO 1

In the above example, when the processgets evaluate expression a > s. If the expressionis
in state idle it will first evaluate expression not true or if the process stayed in the same
(b<10) || (ct=0). If theexpressionisnottrueor stateit will executensgl transition.

if the process stayed in the same state it will

4.8 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Example:

*~Say hi to your friend */
printf("Hello world !'\n");

for (i=0;i<MAX;i++)

{

newString[i] = oldString[i];
}

4.9 - Decision

A decision symbol can be seen asa C switch / case.

or

Decision symbols

Specification & Description Language - Real Time Page 23

1 SDI-I ;i i SDL-RT standard V2.0

Sinceit is graphical and therefore uses quite some space on the diagram it is recommended to use
it when its result modifies the resulting process state. The decision symbol is a diamond with
branches. Since adiamond is one of the worst shape to put text in it, it can be a"diamonded"” rect-
angle. Each branch can be seen as a case of the switch.
The expression to evaluate in the symbol can contain:

» any standard C expression that returns a C true/false expression,

» an expression that will be evaluated against the values in the decision branches.
The values of the branches have keyword expressions such as:

e > < >= <=, 1= ==

e true, false, else
The el se branch contains the default branch if no other branch made it.

Examples:
aVal ue
== nmyVal ue
bVal ue
true fal se el se == 2 el se < 2

4.10 - Semaphoretake
The Semaphore take symbol is used when the process attempts to take a semaphore.

[<status> =]
<senmaphore nane>
(<tineout option>)

Semaphore take symbol

To take a semaphore, the syntax in the ‘ semaphore take SDL-RT graphical symbol’ is:
[<status> =] <semaphore name>(<timeout option>)
where <t i meout option>is:
+ FOREVER
Hangs on the semaphore forever if not available.
« NOWAIT
Does not hang on the semaphore at all if not available.

Page 24 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

 <nunber of ticks to wait for>
Hangs on the semaphore the specified number of ticks if not available.
and <st at us> is:
¢« K
If the semaphore has been successfully taken
+ ERROR
If the semaphore was not found or if the take attempt timed out.

4.11 - Semaphoregive

<semaphor e nanme>

Semaphore give symbol

To give a semaphore, the syntax in the * semaphore give SDL-RT graphical symbol’ is:
<senmaphore nane>

4.12 - Timer start

<timer nane>
(<time out val ue
in tick counts>)

Timer start symbol

To start atimer the syntax in the *start timer SDL-RT graphical symbol’ is:
<tinmer name>(<time value in tick counts>)
<time value in tick counts>isusualy an'‘int’ but is RTOS and target dependant.

4.13 - Timer stop

<ti nmer nane>

Timer stop symbol

To cancel atimer the syntax in the ‘ cancel timer SDL-RT graphical symbol’ is:
<ti mer name>

Specification & Description Language - Real Time Page 25

1 SDI-I ;i i SDL-RT standard V2.0

4.14 - Task creation

<process nane>
[: <process cl ass>]
[PRIO <priority>]

Task creation symbol

To create a process the syntax in the create process symbol is:
<process name>[:<process class>] [PRIO <priority>]
to create one instance of <pr ocess cl ass> named <pr ocess name> with priority <priority>.

Examples:

anot her Pr ocess:

Process
myProcess aCl assOf Process m

PRI O 80

4.15 - Procedure call

[<return variable> =]
<procedure nane>
({<paraneters>}*);

Procedure call symbol

The procedure call symbol isused to call an SDL-RT procedure (Cf. “Procedure declaration” on
page 35). Sinceit is possible to call any C function in an SDL-RT action symbol it isimportant to
note SDL-RT procedures are different because they know the calling process context, e.g. SDL -
RT keywords such as SENDER, OFFSPRING, PARENT are the ones of the calling process.

The syntax in the procedure call SDL graphical symbol is the standard C syntax:

[<return variabl e> =] <procedure name>({<paramneters>}*);

Examples:

nyResult =
nmyPr ocedur e anot her Procedure();
(myPar anet er) ;

Page 26 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

4.16 - Connectors

<connect or nane> <connect or nane>

Connector out Connector in

Connectors are used to:

» gplit atransition into severa pieces so that the diagram stays legible and printable,

* to gather different branchesto a same point.
A connector-out symbol has a name that relates to a connector-in. The flow of execution goes
from the connector out to the connector in symbol.

A connector contains a name that has to be unique in the process. The syntax is:
<connect or nane>

Examples:
printf("Hello "); | . nmyLabel
/

| P |
| % |
| 4 |
| /

nyLabel v d V

printf("world '\'n");

4.17 - Transition option

Transition options are similar to C #i f def .

Transition option symbol

The branches of the symbol have valuest r ue or f al se. Thet r ue branch is defined when the
expression is defined so the equivalent C codeiis:

Specification & Description Language - Real Time Page 27

1 SDI-I ;i i SDL-RT standard V2.0

#i f def <expression>

The branches can stay separated to the end of the transition or they can meet again and close the
option aswould do an #endi f .

Examples:

DEBUG
| |
true false
| |
a = 2; a = 2;
b = 3; b = 3;
nmyLogFunction(a, b);
|
EXTEND
| |
true false
| |
a = 2; a=4
b = 3; b =4
c = 4; c =10
idle mai nt enance

4.18 - Comment

The comment symbol allows to write any type of informal text and connect it to the desired sym-
bol. If needed the comment symbol can be left unconnected.

Page 28 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

| Free text to
——J{coment a con-
| nected synbol .

Comment symbol

Example:

(idle
nsgl i ndi cates

msgl the systemis
r eady.

4.19 - Extension

The extension symbol is used to complete an expression in a symbol. The expression in the exten-
sion symbol is considered part of the expression in the connected symbol. Therefore the syntax is
the one of the connected symbol.

<connect ed
— synbol
synt ax>

Extension symbol

Specification & Description Language - Real Time Page 29

1 SDI-I ;i i SDL-RT standard V2.0

Example:
(TyDat aLengt h,
ConReq my Dat a)
TO_ENV
MESSAGE_TO HDLC

IS equivalent to:

IConReq

(nmyDat aLengt h, nyDat a)
TO_ENV

IMESSAGE_TO HDLC

4.20 - Procedure start

This symbol is specific to a procedure diagram. It indicates the procedure entry point.

D

Procedure start symbol

There is no syntax associated with this symbol.

4.21 - Procedurereturn

This symbol is specific to a procedure diagram. It indicates the end of the procedure.

@ [<return val ue>]

Procedure return symbol

This symbol is specific to a procedure diagram. It indicates the end of the procedure. If the proce-
dure has areturn value it should be placed by the symbol.

4.22 - Text symbol
This symbol isused to declare C types variables.

Page 30 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

<any C | anguage instructions >

Text symbol
The syntax is C language syntax.

4.23 - Additional heading symbol
This symbol is used to declare SDL-RT specific headings.

| <SDL- RT cont extual declaration >\j
|
|

Additional heading symbol

It has a specific syntax depending in which diagram it is used.
» Block heading
Allows to declare messages and messages lists:

MESSAGE <nessage name> [(<paramtype>)] {, <nmsg nanme> [(<paramtype>)]};
MESSAGE LI ST <nessage |ist nanme> = <nessage nanme> {, <nessage nane>}*;

» Process class heading
Allows to specify the superclass to inherit from:
| NHERI TS <super cl ass nane>;
» System, Block, Block class heading
Allows to specify the package to use:
USE <package nane>;
» Process or Process class heading
Allows to define the stack size:
STACK <stack size val ue>;

4.24 - Object creation symbol

<object name>:<class name>({ <parameter>}*)

Thisisequivalent to creating an instance of class<cl ass name> named <obj ect nane>.
This symbol can be used by tools to check consistency between the dynamic SDL view and the
static UML view.

Specification & Description Language - Real Time Page 31

1 SDI-I ;i i SDL-RT standard V2.0

Examples:
myObject:M/Cl ass(12, "foo0");
nyQbj ect = new MO ass(12, "foo");
/ \
myPr ocess
\ y
I foo: MyCl ass(...)
foo |1
M/d ass myProcess start
transition
The relation described in the class diagram implies the instance of MyCl ass
named after role name f oo must be created in the start transition.

Page 32 Specification & Description Language - Real Time

SDL-RT standard V2.0

SIIRT

4.25 - Symbolsordering

The following table shows which symbols can be connected to a specific symbol.

The symbol in
this column can
be followed by
the ticked sym-
bolsin itsrow.

. ||Start

« [[input

Ssave

. |[continuous signal

. [[timer stop

Start

< ||state
 |[stop

= |loutput

x<|laction

x<|/decision

=|/semaphore take

x||semaphore give
=< |[timer start

x|[task creation

||[procedure call
x<|lconnector in

x||connector out

x| [transition option
. [|procedure start

. |[procedure return
||object creation

state

x

x

x

stop

input

x

output

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x

x| X

x| X

x| X

x| X

save

continuous

action

semaphore take

semaphore give

timer start

timer stop

task creation

procedure call

X| X[X| X[X| X[X]| X

X| X[X| X[X| X| X]| X

X| X[X| X[X| X| X]| X

X| X[X| X| X| X| X]| X

X| X | X| X| X| X| X]| X

X| X[X| X[X| X[X]| X

X| X | X| X| X| X| X]| X

X| X[X| X[X| X| X]| X

X| X | X| X| X| X| X]| X

X| X | X| X| X| X| X]| X

X| X[X| X[X| X[X]| X

X| X[X| X| X| X| X| X

X| X[X| X[X| X[X]| X

X| X[X| X| X| X| X| X

X| X[X| X| X| X| X]| X

X| X[X| X| X| X| X]| X

connector out

connector in

transition option

procedure start

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

x| X

X | X| X

X | X| X

X | X| X

procedure return

The table above should be read row by row. The symbol in the left column can be followed by the
ticked symbols onitsrow. For example the stop symbol can not be followed by any other symbol.
The state symbol can be followed by input, save, or continuous signal symbols.

Specification & Description Language - Real Time

Page 33

1 SDI-I ;i i SDL-RT standard V2.0

5 - Declarations

5.1 - Process

A processisimplicitly declared in the architecture of the system (Cf. “ Architecture” on page 9)
since the communication channels need to be connected.

aProcess

Process symbol

A process has an initial number of instances at startup and a maximum number of instances. A
process can also be an instance of a process class (Cf. “ Object orientation” on page 57), in that
case the name of the class follows the name of the instance after a colon.

The general syntax is:

<process instance nane>[:<process class>][(<initial nunmber of instances>, <nmaxinmum
nunmber of instances>)] [PRI O <priority>]

The priority is the one of the target RTOS.
Please note the stack size can be defined in the process or process class additional heading symbol
as described in paragraph “ Additional heading symbol” on page 31.

When a process is an instance of a process class the gates of the process class need to be con-
nected in the architecture diagram. The names of the gates appear in the process symbol with a
black circle representing the connection point.

<process name>:
<process cl ass nane>

<gate nane

Process class instance

The messages defined in the package going through the gates must be consistent with the mes-
sages listed in the architecture diagram where the process instance is defined.

Page 34 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

Example:

‘ myPr ocess |
si g3]
[sig2]

gate2
aProcess: aProcessd ass
upper Level Channel |-g p @Uatel
[sigQutl] [siglnl]

5.2 - Procedure declar ation

An SDL-RT procedure can be defined in any diagram: system, block, or process. It is usually not
connected to the architecture but since it can output messages a channel can be connected to it for
informational purpose.

<return type>

<function name>
({<paraneter type>
<parameter nane>}*);

Procedure declaration symbol

The declaration syntax is the same as a C function. A procedure definition can be done graphi-
cally with SDL-RT or textualy in astandard C file.

5.2.1 SDL-RT defined procedure

If defined with SDL-RT the calling process context isimplicitly given to the procedure. Soif a
message output is done, the message will be output from the process calling the procedure. That is
why the message should be defined in one of the channels connected to the process instead of a
channel connected to a procedure. To call such a procedure the procedure call symbol should be
used.

Specification & Description Language - Real Time Page 35

1 SDI-I ;i i SDL-RT standard V2.0

5.2.2 C defined procedure
If defined in C language the process context is not present. To call such a procedure a standard C
statement should be used in a action symbol.

Example:
int
cal cul at eCRC | aProcess
(int datalLength,
char *pData);
[s1g3]
[sig2]
bProcess
upper Level Channel <=
[sigQutl] [siglnl]
5.3 - M essages

Messages are declared at any architecture level in the additional heading symbol. A message dec-
laration may include the parameter typein C. The syntax is.

MESSAGE <nmessage nane> [(<paraneter type>)] {, <nessage nane> [(<paraneter
type>)]};

It isalso possible to declare message lists to make the architecture view more synthetic. Such a
declaration can be made at any architecture level in the additional heading symbol. The syntax is:
MESSAGE LI ST <message |ist nane> = <nmessage nanme> {, <nessage nane>}*;

A message list can contain a message list, the included message list name is surrounded by paren-
thesis.

Page 36 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

MESSAGE \
msgl(nyStruct *), \
msg2(voi d), \
msg3(void *), |

msg4(int *), |

|
|
|
|
|

|
|
|
| nsgs;
|

IVESSAGE LI ST

| nyMessagelist = nsgl, nsg2;

IVESSAGE_LI ST

| anot her MessagelLi st = (nyMessagelist), nsg3;

54-Timers
There is no need to declare timers. They are self declared when used in a diagram.

5.5 - Semaphores

Semaphores can be declared at any architecture level. Since each RTOS has its own type of sema-
phores with specific optionsthere will be no detailed description of the syntax. The general syntax
in the declaration symbol is:

<senmaphore type>
<semaphore name>({<list of options>[,]}*);

Semaphore declaration

It isimportant to note the semaphore isidentified by its name.

Specification & Description Language - Real Time Page 37

1 SDI-I ;i i SDL-RT standard V2.0

6-MSC

SDL-RT integrates the Message Sequence Chart dynamic view. On such a diagram, time flows
from top to bottom. Lifelines represent SDL-RT agents or semaphores and key SDL-RT events
are represented. The diagram put up front the sequence in which the events occur.

In the case of embedded C++ it is possible to use a lifeline to represent an object. In that case the
typeisobj ect and the name should be <obj ect nane>: <cl ass nane>

6.1 - Agent instance

An agent instance starts with an agent instance head followed by an instance axis and ends with
an instance tail or an instance stop as shown in the diagrams bel ow.

[<type>] [<type>]
<name> <name>

]

Lifeline with an instance Lifeline with an instance
tail symbol stop symbol

The type of the agent can be specified on top of the head symbol and the name of the agent iswrit-
ten in the instance head symbol. Theinstance tail symbol means the agent lives after the diagram.
The instance stop symbol means the agent no longer exist after the symbol.

When an agent creates another agent a dashed arrow goes from the parent agent to the child agent.

Page 38 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

Example:

process

pParent
process
___________________ > pO_TTsprl ng

]]

Process pParent creates process pOffspring

6.2 - Semaphore representation

A semaphore representation is made of a semaphore head, alifeline, and a semaphore end or tail.
The symbols are the same as for a process except for the head of the semaphore.

[semaphor e] [semaphor €]

ﬂ <nane> ﬂ <nane>

Semaphore with an Semaphore with an
instance tail symbol instance stop symbol

6.3 - Semaphore manipulations

Several cases are to be considered with semaphore manipulations. A process makes an attempt to
take a semaphore, its attempt can be successful or unsuccessful, if successful the semaphore
might still be available (counting semaphore) or become unavailable. During the time the sema-
phore is unavailable, itslifeline gets thicker until it is released.

Specification & Description Language - Real Time Page 39

NTIRT,

SDL-RT standard V2.0

The manipulation symbols are the following:

<sem nane>

Semaphore creation from aknown
process.

take »{

Semaphore take attempt.

Semaphore take successfull but
semaphore is still available.

timed out

Semaphore take timed out.

give

Semaphore give. The semaphore
was available before the give.

Semaphore iskilled by aknown
process.

ﬂ <sem nanme>

Semaphore creation from an
unknown process.

take

Semaphore take attempt on a
locked semaphore.

Semaphore take successfull and the
semaphore is not available any
more.

Semaphore continues.

give

Semaphore give. The semaphore
was unavailable before the give.

X

Semaphore iskilled by an
unknown process.

Page 40

Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

Example:
myProcl nmyProc2
——————————————— >ﬂ mySem
take
succeeded
4_ ______________________
take
-
give
>J_ succeeded
__________________ _>
give
-
4. _________________

ProcessnyPr oc1 first creates semaphore ny Sem then takesit successfully.
Process nyPr oc2 makes an attempt to take semaphore ny Sembut gets

blocked on it. Process myPr oc1 releases the semaphore so nyPr oc2 suc-

cessfully gets the semaphore. Process nyPr oc2 givesit back, and killsiit.

6.4 - M essage exchange

A message symbol isasimple arrow with its name and optional parameters next to it. The arrow
can be horizontal meaning the message arrived instantly to the receiver or the arrow can go down
to show the message arrived after a certain time or after another event. A message can not go up !
When the sender and the receiver are represented on the diagram the arrow is connected to their
instances. If the sender ismissing it is replaced by awhite circle, if the receiver ismissing itis
replaced by ablack circle.The name of the sender or the receiver can optionally be written next to
thecircle.

Specification & Description Language - Real Time Page 41

1 SDI- SDL-RT standard V2.0

process block

sender receiver
run

keypad (™Y g i nitMsg

(12,"Hell o worl d\n")

r eadyMsg

start Msg

run

4* engi ne
]]

An external agent called keypad sendsr un message to process sender .
Processsender sendsi ni t Msg that is considered to be received immedi-
atly toblock r ecei ver. Block r ecei ver repliesr eadyMsg, processsender
sendsst art Msg, and block r ecei ver sendsr un to an external agent.

A message is considered received by an agent when it is read from the agent’s message queue; not
when it arrives in the message queue !

Page 42 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

msgl

msgl is sent from instance ato

instance b
msgl msgl I
msgl isreceived from an unknown msgl is sent to an unknown
sender receiver

msgl

msgl
—>

[/ _s

msglissaved and is still in the
save queue

———

saved msgl is now consumed

6.5 - Synchronous calls

This representation is used when using embedded C++ to show method calls on an object. Object
can be represented by lifelines. Synchronous calls are shown with an arrow to the instance repre-
senting the object. While the object has the focus its lifeline becomes a black rectangle and the
agent lifeline becomes a white rectangle. That means the execution flow has been transferred to
the object. When the method returns a dashed arrow return to the method caller.

Specification & Description Language - Real Time Page 43

1 SDI-I ;i i SDL-RT standard V2.0

process object
key board ’ myPhoneBook:PhoneBook
set _URL

("http://ww. sdl-rt.org")

r——- === =1

Processkeyboar d calls method set _URL from myPhoneBook object that is
an instance of PhoneBook class.

6.6 - Sate

A lifeline represents a process and depending on itsinternal state a process reacts differently to
the same message. It isinteresting to represent a process state on its lifeline. It is also interesting
to represent aglobal state for information. In that case the state symbol covers the concerned
instances. In both cases the same symbol is used.

Sate symbol

Page 44 Specification & Description Language - Real Time

SDL-RT standard V2.0

Example:

process

caller

gt

process
idle
conRe
g -
conConf

< connect ed >
L]

< connect ed >
L]

Processserver goestoi dl e state. Processcal | er inits start transition
sendsaconReq to server and goesto statei dl e. Processser ver returns
an conConf message and goesto connect ed state. When conConf message
isreceived by processcal | er it aso movesto connect ed state.

Specification & Description Language - Real Time

Page 45

1 SDI- SDL-RT standard V2.0

6.7 -Timers

Two symbols are available for each timer action depending if the beginning and the end of the
timer are connected or not. The timer name is by the cross and timeout value is optional. When
specified the timeout value unit is not specified; it is usually RTOS tick counts.

<timer nanme> <timer name> <timer name>
[(<timer time>)] [(<tinmer tine>)] [(<timer time>)]

)

Timer start connected Timer stop unconnected Timeout unconnected

<ti mer name> <tinmer nane> <ti mer nanme>
[(<timer tinme>)] [(<tinmer tinme>)] [(<tinmer tine>)]

Timer start unconnected Timer stop connected Timeout connected

\

<timer name>
[(<timer tinme>)]

.

Timer restart connected

Page 46 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDL

Examples:
process process
caller server
idle
conRe
g |
t ConReq
% (100)
< idle >
< conConf
%< t ConReq
< connect ed > < connect ed >

]]

Processcal | er triesto initiate connection with conReq message. At the
sametimeit startstimer t ConReq S0 that if no answer isreceived it will
retry connecting. If an answer isreceived the timer is cancelled and process
cal | er goesto state connect ed.

Specification & Description Language - Real Time Page 47

1 SDI-I ;i i SDL-RT standard V2.0

process process
[l |
idle
conRe
g '

t ConReq
(100)
< connecting
conReq >
t ConReq

(100)

< connecting

INLRRREA

E— E—

Processcal | er triesto initiate connection with conReq message. Since it
receives no answer after two tries it gives up and goes to unconnected state.

6.8 - Timeinterval
To specify atime interval between two events the following symbol is used.

<tinme constraint>

Time constraint syntax is the following:
» absolute timeis expressed with an @ up front the time value,

Page 48 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

» relativetimeis expressed with nothing up front its value,

» timeinterval isexpressed between square brackets,

» timeunit is RTOS specific -usually tick counts- unless specified (s, ms, ps).
Noteit is possible to use time constraint on asingle MSC reference.

Absolute time can also be specified with the following symbol:

<absolute tine value>_ . -

Examples:
Table 1. Examples of time constraint expressions
Expression Meaning
1. 3ms takes 1.3 msto do
[1,3] takes a minimum of 1 to amaximum of 3 time units

@12. 4s, 14. 7s] | should not occur before absolute time 12.4 s and should not finish after
absolutetime 14.7 s.

<5 takes lessthan 5 time units
process @4S process
[dien | - -
o idle
A kR
wor kReq >
[0, OX02FF]

g

wor kResp

Processser ver reaches statei dl e at absolute time 34 Sec.

Processcl i ent request process server to compute some work in less than
O0x02FF time units.

Specification & Description Language - Real Time Page 49

1 SDI-I ;i i SDL-RT standard V2.0

process process

caler server

[0, 200nE] % _____ C Connect i ng >

]

Connect i ng MSC should take |ess than 200mS.

6.9 - Coregion

Coregion is used whenever the sequence of events does not matter. Eventsin a coregion can hap-
pen in any order. The coregion symbol replaces the lifeline instance.

_
|
|
|
|
|
|
|

JR—

Coregion symbol

Example:

process

controller

st opEngi ne -

di splaylnfo -

Processcontrol | er
sends st opEngi ne and di spl ayl nfo or
sends di spl ayl nf o and st opEngi ne.

Page 50 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

6.10 - M SC reference
MSC reference allows to refer to another MSC. The resulting MSC is smaller and more legible.

C <MSC nane> >

M SC reference symbol

A reference concerns the connected instances. An instance is connected if itslifeline disappearsin
the symbol. An instance is not connected if it goes over the reference symbol.

Specification & Description Language - Real Time Page 51

1 SDI- SDL-RT standard V2.0

Example:
process process
[l]
idle
conRe
g -
t ConReq
% (100)
< idle >
< conConf
%< t ConReq
< connect ed > < connect ed >

]]

Connecting MSC

process process

< Connecti ng >

sendDat a

sendDat a

-

]]

Dat aTr ansfer MSC

TheDat aTr ansf er MSC startswith areferenceto Connect i ng MSC. That
means the scenario described in Connect i ng MSC is to be done before the
rest of the Dat aTr ansf er MSC occur.

Page 52 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

6.11 - Text symbol
The text symbol contains data or variable declarations if needed in the MSC.

<any C | anguage decl arati ons>

Text symbol

6.12 - Comment

Asits name states...

| Free text to
——{coment a con-
|nected synbol .

Comment symbol

6.13 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Examples:

¥~ Say hi to your friend */
printf("Hello world !'\n");

for (i=0;i<MAX;i++)

{

newString[i] = oldString[i];

Specification & Description Language - Real Time Page 53

1 SDI-I ;i i SDL-RT standard V2.0

unsi gned char *full Data, *dat a;
int | engt h; |

process process

caller server

< Connecti ng >

sendDat a

(Tength, dat a) >
F—— = — — _
et py(| full Dat a
ful | Dat a, poi nter points
dat a, at the end of
l engt h); | buffer.
Lo _

]]

Dat aTr ansfer MSC

The action symbol contains standard C instructions related to data declarations.

6.14 - High-level MSC (HM SC)

High level MSC diagram is a synthetic view of how MSCsrelate to each other. It isonly afew
symbols: start, stop, alternative, parallel, state or condition, and M SC reference.

VA w

Pardlel Alternative
MSC reference State or condition

Page 54 Specification & Description Language - Real Time

SDL-RT standard V2.0

NTIRT,

The SDL-RT HM SC starts with the start symbol and ends with the stop symbol. The parallel sym-
bol means the following connected path will be executed in parallel. The Alternative symbol
means one and only one of the connected path is executed. Whenever two paths meet again the
path separator symbol isto be repeated. That meansif a parallel symbol is used that creates two
different paths, the parallel symbol should be used when the path merge back.

Symbols are connected with lines or arrows if clearer. A symbol is entered by its upper level edge

and leaved by any other edge.

Example:

di sconnect ed

(conFail ed) < conSucceeded >

(
D

(supervising) < dat aTr

ansf er >

0
D

< di sconnect >

The system startsin di sconnect ed state. Connection attempts are made,
either the conFai | ed scenario or the conSucceeded scenario is executed. If
conSucceeded isexecuted super vi si ng and dat aTr ansf er are executing
in parallel. They merge back to di sconnect and end the HMSC scenario.

Specification & Description Language - Real Time

Page 55

1 SDI-I ;i i SDL-RT standard V2.0

7 - Datatypes

The data types, the syntax and the semantic are the ones of ANSI C and C++ languages. In order
to ease readibility in the rest of the document, the expression’ C code’ implicitly means’ ANSI C
and C++ code'. Thereisno SDL-RT predefined data types at al but just some keywords that
should not be used in the C code. Considering the SDL-RT architecture and concepts surrounding
the C code some important aspects need to be described.

7.1 - Type definitions and headers
Types are declared in the text symbol:

<Any C type declaration >

Types declared in an agent are only visible in the architecture below the agent.

7.2 - Variables

Variables are declared after the type definitions in the same text symbol.

<Any C gl obal variable definition >

<Any C type definition >

Variables declared in an agent are only visible in the architecture bel ow the agent. For example
global variables are to be declared at system level. A variable declared in ablock level isnot seen
by an upper level block. Variables declared in an SDL-RT processin atext symbol are local to the
process. They can not be seen or manipulated by any other process.

7.3 - C functions

SDL-RT internal C functions are to be defined through the SDL-RT procedure symbol. An SDL -
RT procedure can be defined graphically in SDL-RT or textually in C. When defined in C the pro-
cedure call symbol should not be used. A standard C statement in an action symbol should be
used.

7.4 - External functions

External C functions can be called from the SDL-RT system. These should be prototyped in the
system or in an external C header. It isup to an SDL-RT tool to gather the right files when compil-
ing and linking.

Page 56 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

8 - Object orientation

8.1 - Block class

Defining a block class alows to use the same block several timesin the SDL-RT system. The
SDL-RT block does not support any other object oriented features. A block class symbol isa
block symbol with a double frame. It has no channels connected to it.

<bl ock cl ass nane>

A block class can be instantiated in a block or system. The syntax in the block symboal is:

<bl ock instance nanme>: <bl ock cl ass name>

Messages come in and go out of a block class through gates. In the block class diagram gates are
represented out of the block class frame. When a block classis instantiated the gates are con-
nected to the surrounding SDL-RT architecture. The messages listed in the gates are to be consis-
tent with the messages listed in the connected channels.

—————————————————

<bl ock instance nane>:
<bl ock cl ass nane>

_._______

<gate nanme>

Specification & Description Language - Real Time Page 57

SDL SDL-RT standard V2.0

Example:
nmyBl ockC ass
Gat e2
4 cEnv2
o= > @< aProcess
[si gQut 2] [sigln2] [si gQut 2] [sigln2]
cl nt ernal
0« nyGat el > @ bProcess
[sigQut1, [siglni] [si gQut 1] [siglni]
si gQut 3]
Definition diagram of myBlockClass block class
mySystem A [messages,
message9)
chEnvB
[message7]
T)
chEnvA 1 blockA:myBlockClass 1 blockB
| I chAB
|- », nmyGat el my Gat e2 ,4 -
[sigQut1l, [siglnl] | | [sigin2] [sigQut 2]
sigout3y T ------7-7"

blockA is an instance of myBlockClass

8.2 - Process class

Defining a process class allows to:
* have several instances of the same process in different places of the SDL-RT architec-
ture,
* inherit from a process super-class,
* gpecializetransitions and states.

Page 58 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

A process class symbol is a process symbol with a double frame. It is has no channels connected
toit.

MyProcess

A process class can be instantiated in ablock or a system. The syntax in the process symbol is:
<process i nstance nanme>: <pr ocess cl ass name>

Messages come in and go out of a process class through gates. In the process class diagram, gates
are represented out of the process class frame. When a process class is instantiated the gates are
connected to the surrounding SDL-RT architecture. The messages listed in the gates are to be con-
sistent with the messages listed in the connected channels. The names of the gates appear in the
process symbol with ablack circle representing the connection point.

F—_——— = = = = = = = = =

<process nane>:
<process cl ass nane>

_———— = = = =

\
|
|
|
|
|
<gate nane>¢@
)

e e e - - — o

Since aclass is not supposed to know the surrounding architecture, message outputs should not
use the TO_NAME concept. Instead TO_ID, VIA, or TO_ENV should be used.

Specification & Description Language - Real Time Page 59

1 SDI-I ;i i SDL-RT standard V2.0

Example:
myPr ocess

[sig3]

[sig2]
;" gate2 T N
(\
| |
: aProcess: aProcessd ass :
| |
upper Level Channel |«a » @Uatel |
[sigQutl] [siglnl] | !
AN /

SDL-RT transitions, gates and data are the elements that can be redefined when specializing. In
the sub class, the super classto inherit from is defined with the | NHERI TS keyword in an addi-
tional heading symbol. There are several ways to specialize a process class depending on what is
defined in the super class.

Page 60 Specification & Description Language - Real Time

SDL-RT standard V2.0

1

SIIRT

» If the element is new in the sub class, it is ssmply added to the super class definition,

-
I
L

nsg3
et e
[msg3]
MySuperClass
stabl e
1
nsg3 <msgl <
nyGat el ‘ ‘
o————»0

[msg3]

(o) o

An instance of MyClass

Specification & Description Language - Real Time

Page 61

1 SDI-I ;i i SDL-RT standard V2.0

 If the element existsin the super class, the new element definition overwrites the one of

the super class,
[E D T M ™
Int nyVar; T I NHERI TS MySuper d ass;
L - - - - — — — |
msg3 msg3
nmyVar = 2; nmyVar = 3;
myGat el
o——»0 unst abl e
[msg3]
[
MySuperClass MyClass

i nt nyVar; W

nmsg3

myVar = 3;

nyGat el
’—>[. ® unst abl e
nsg

An instance of MyClass

» A classcan be defined as abstract with the ABSTRACT keyword. It means the class can not
be instantiated asis; it needsto be specialized. A class can define abstract transitions or

Page 62 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

abstract gates. It means the abstract transition or gate exists but that it is not defined.
Such aclassis obviously abstract and needs to be defined as such.

| NHERI TS MyAbst ract Super Ol ass;)
Lo J
stabl e (stabl e)
ABSTRACT nsg3
nsg3
nyGat el
o——»0 unst abl e
[msg3]
MyA bstractSuperClass MyClass

nyGat el
o—————»0 unst abl e
[msg3]

An instance of MyClass

Specification & Description Language - Real Time Page 63

SDL SDL-RT standard V2.0

Here comes an example mixing all object oriented concepts and the resulting object:

i nt nyVar; T
stabl e
msgo < msg3 < ABSTRACT
VI RTUAL msg2
oe MGie2 Lo \ \
myVar = 5; myVar = 2;
myGat el
.—>‘ mai I'lt
[msg3]
MyA bstractSuperClass

char nyQt her Var ; T

stabl e
nsg3 nsg2 < nmsgl <

Z g msg4
myGat e2 myVar = 3; myQt her Var = I A nyGat e2
[msg4] [msg2,
nsgl]
unst abI e ‘ stabl e

MyClass

Page 64 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

int nyVar; ’

char myQt her Var;

st abl e

nyGat el o nsg5 neg3 neg2 nmegl <
o ———»
o) | | | |
nyvar = 5; nyVar = 3; hyCtherVar = 'a’; Ufgd'rry&te}
my Gat e2
o —p
- 0 e | | | |
msg1] < mai nt > <unstable> < idle > < stabl e >

An instance of MyClass

8.3 - Classdiagram

The SDL-RT class diagram is conform to UML 1.3 class diagram. Normalised stereotypes with
specific graphical symbols are defined to link with SDL graphical representation. All symbolsare
briefly explained in the paragraphs below. Detailed information can be found in the OMG UML
v1.3 specification.

8.3.1Class
A classisthe descriptor for a set of objects with similar structure, behavior, and relationships.

<cl ass nanme>
<cl ass nane>

<attributes>
<oper at1 ons>

Class symbol with

details suppressed Class symbol full rep-

resentation

A stereotypeis an extension of the UML vocabulary allowing to create specific types of classes.
If present, the stereotype is placed above the class name within guillemets. Alternatively to this
purely textual notation, special symbols may be used in place of the class symbol.

Specification & Description Language - Real Time Page 65

1 SDI-I ;i i SDL-RT standard V2.0

<<process>>
<process nane> e <process nane>

<oper at1 ons> <oper at1ons>

\ V.

Class stereotyped as a Class stereotyped as a
process process

Classes are divided in active classes and passive classes. An instance of an active class owns a
thread of control and may initiate control activity. An instance of a passive class holds data, but
does not initiate control. In the class diagram, agents are represented by active classes. Agent type
is defined by the class stereotype. Known stereotypes are: syst em bl ock, bl ock cl ass, proc-
ess, and process cl ass. Active classes do not have any attribute. Operations defined for an
active class are incoming or outgoing asynchronous messages. The syntax is:
<nessage way> <message name> [(<paraneter type>)] [{via <gate nanme>}]
<message way> can be one of the characters:

« >’ for incoming messages,

» <’ for outgoing messages.

// \

pPhone

call (int) {via gEnv}
hangUp {vi a gEnv}
conReq {via gSwi tch}
conConf {via gSw tch}
di sReq {via gSwi tch}
di sConf {via gSw tch}

\ /
\ /
Process class pPhone can receive messages

cal I and hangUp through gate genv and

send conReq, conConf , di sReq, di sConf
through gate gSwi t ch.

NNNANNV YV

Page 66 Specification & Description Language - Real Time

SDL-RT standard V2.0

{sDL

Pre-defined graphical symbolsfor stereotyped classes are described below:

<<process
cl ass>>

<oper at1 ons>

V' “

<process cl ass

‘<operat|0ns> 4

Classstereotyped as
aclass of process

<<process>>
<pr ocess nane>

<oper at1 ons>

Classstereotyped as
aprocess

<<bl ock>>
<bl ock nane>

<oper at1 ons>

Classstereotyped as
ablock

<<bl ock
cl ass>>

\ /
Classstereotyped as
aclass of process

4 N

<process nanme>

‘<operat|ons> y

Classstereotyped as
aprocess

<bl ock nane>

Koper at1 ons>

Classstereotyped as
ablock

<oper at1 ons>

Classstereotyped as
aclass of block

<<syst enp>
<syst em name>

<bl ock nane>

Koper at 1 ons>

<oper ati ons>

Classstereotyped as
asystem

Classstereotyped as
aclass of block

<<syst enp>
<syst em nanme>

Koper at | ons>

Classstereotyped as
asystem

Specification & Description Language - Real Time

Page 67

NTIRT,

SDL-RT standard V2.0

8.3.2 Specialisation

Specialisation definesa’isakind of’ relationship between two classes. The most general classis
called the superclass and the specialised classis called the subclass.

Specialisation link

<super cl ass
name>

<subcl ass nane>

Subclassisakind of
superclass

The relationship from the subclass to the superclassis called gener alisation.

8.3.3 Association

An association isarelationship between two classes. It enables objects to communicate with each
other. The meaning of an association is defined by its name or the role names of the associated
classes. Cardinality indicates how many objects are connected at the end of the association.

<cl ass A nanme>

<class A
rol e nane>

<cl ass B
rol e nane>

<cardinality>

<associ ati on nane>

<cardinality>

<cl ass B nane>

Page 68

Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

Tel ephone

t erm nal *
Each Tel ephone is
connected to one
Switch.ASwitchis

connected to several A
Tel ephone is connected to
) v

A Tel ephone isa
term nal fora

Swi t ch.
switch | 1

Swi tch

Instances of a class are identified by the associated class viaits role name.
In the example above an isntance of Swi t ch identifies the instances of Tel ephone it is connected

to viathe namet er mi nal .

8.3.4 Aggregation
Aggregation definesa’isapart of’ relationship between two classes.

<cont ai ner cl ass
nane>

<rol e nane>

<rol e nane> <cardinality>

Aggregation link <cont ai ned cl ass
nane>

contained classisapart
of container class

Objectsidentify each other as described for regular associations (Cf. “Association” on page 68).

Specification & Description Language - Real Time Page 69

1 SDI-I ;i i SDL-RT standard V2.0

8.3.5 Composition

Composition is a strict form of aggregation, in which the parts are existence dependent on the
container.

<cont ai ner cl ass
name>

<rol e nane>

<rol e nanme> <cardinality>

Aggregation link <cont ai ned cl ass

nane>

contained classisapart
of container class

Objects identify each other as described for regular associations (Cf. “Association” on page 68).

8.4 - Package

A package is a separated entity that contains classes, agents or classes of agents. It is referenced
by its name.

[]

<package nane>

It can contain:
o classes,
* systems,
» blocks,
» classes of blocks,
* processes,
 classes of processes,
e procedures,
» datadefinitions.

Page 70 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

8.4.1 Usagein an agent

Agent classes definitions can be gathered in a package. To be able to use classes defined in a
package, an SDL-RT system should explicitly import the package with USE keyword in an addi-
tional heading symbol at system level.

USE <package nane>; — “\

8.4.2 Usage in a class diagram
Classes defined in a package can be referenced in 2 ways:
 prefix the class name with the package name

<package name>::<cl ass name>

<attributes>

<oper at1 ons>

Class <cl ass nane> isdefined in
package <package nanme>

 use the package graphical symbol as a container of the class symbol

myPackage ‘

MySuper d ass

JAN

Myd ass

myAt T ribut es
myCOper at i ons

M/Cl ass specialises WySuper Cl ass
defined in nyPackage.

Specification & Description Language - Real Time Page 71

1 SDI-I ;i i SDL-RT standard V2.0

9 - Deployment diagram

The Deployment diagram shows the physical configuration of run-time processing elements of a
distributed system.

9.1 - Node

A nodeisaphysical object that represents a processing resource.

<Node nane>

<Node attri bute>

9.2 - Component

A component represents a distributabl e piece of implementation of a system. There are two types
of components:
» Executable component

<Conponent nane>

[::%:::] <Conponent attribute>

» File component

<file nane>

Page 72 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

9.3 - Connection

A connection isaphysical link between two nodes or two executable components. It is defined
by its name and stereotype.

<< <stereotype> >> _

<connecti on nane>

Specification & Description Language - Real Time Page 73

1 SDI-I ;i i SDL-RT standard V2.0

9.4 - Dependency

Dependency between elements can be represented graphically.
* A dependency from a node to an executable component means the executable is running
on the node.
* A dependency from a component to a file component means the component needs the
file to be built.
» A dependency from anodeto afile meansthat all the executable components running on
the node need the file to be built.

MyNode

My Code. ¢

My Conponent runson MyNode and needs MyCode. ¢ fileto
be built.

Page 74 Specification & Description Language - Real Time

SDL-RT standard V2.0

9.5 - Aggregation

A node can be subdivided of nodes.

VneRack

Net wor kBoar d

Cont r ol Board

VeRack node is subdivided of Newt or kBoar d and Cont r ol Boar d

9.6 - Node and components identifiers

Attributes are used by connected nodes or components to identify each other.

NodeA

<<IP>>

f

NodeAl

nyNet.id=192.168.1.1

myNet

NodeA2

nyNet . i d=192. 168. 1. 2

[::F:] nyNet . i d=49251

NodeB
nyNet .1 d=192. 168. L. 12

=
:;:] myNet . i d=50000

Cpt B can connect to Cpt A1 vianyNet connection by using NodeAl nyNet . i d
attribute and Cpt A1 nyNet . i d attribute.

Nodes' attribute can be omitted if not needed.

Specification & Description Language - Real Time

Page 75

NTIRT,

SDL-RT standard V2.0

10 - Symbols contained in diagrams

The table below shows what symbols can be contained in a specific diagram type.

5|5

BT |2 »

BI% i 3
In the diagrams listed 3.8 8| 5| B c
o g‘@ o < = 519 = - DS
in this column the éﬁ g o2 = [El2 ® |58 2 & S 8|6
ticked symbols on the “’3@ ﬁBE—@ S| B §_§ B Bl= gué.@tﬁ
: 8| < X B (SIS |2 A G ol et 58’
right can be used. §88888 %._EHQCD%Q E8%EE%5

dC SRR ERE R B RIS A EEE5E 3

package XIX[X[X[X|[X[X[X[X[X|X|-|-[X] X [X - X
class diagram XX [X|X|X[-|-[-]-/|-]-]-|-|x] x [x - X
block class Sl IX XX XXX XX[X]-]-| - |- - -
process class S I I I I I I A 'O D A I D B R - N
block Sl IX XX XXX X][-|Xx[-]-] - - -
process -l - - - x]x -Ix-1 - |- - -
procedure -1 -1-1-1-1-Ix[-1-Ix[-1 - |- - -
deployment X X

A diagram listed in the first column can contain the ticked symbols in the other columns. For
example the process symbol can contain the additional heading symbol, the text symbol and all
the behavior symbols. The behavior symbols are al symbols described in “Behavior” on page 14.

Page 76

Specification & Description Language - Real Time

SDL-RT standard V2.0 SDL

11 - Textual representation

Storage format follows XML (eXtensible Markup Language standard from W3C available at
http://www.w3.0rg) standard with the following DTD (Document Type Definition):

<l-- Entity for booleans -->
<l-- -->

<l ENTI TY % bool ean "(TRUE| FALSE) ">

<!-- Entities for synmbol types -->

<l-- -->

<l ENTI TY % sdl Synbol Types1l "sdl SysDgnfr nj sdl SysTypeDgnfr m sdl Bl kDgnfr mj sdl Bl kTypeDgn¥r nj
sdl Bl kType| sdl Bl k| sdl Bl kTypel nst| sdl PrcsType| sdl Prcs| sdl PrcsTypel nst">

<IENTI TY % sdl Synbol Types2 "sdl I nherits]|sdl PrcsTypeDgnfrm sdl PrcsDgnfr ni sdl Pr cdDgnFr ni

sdl Start| sdl St at e| sdl | nput Si g| sdl SendSi g| sdl SaveSi g| sdl Cont Si g" >

<IENTI TY % sdl Synbol Types3 "sdl Task| sdl Deci si on| sdl TransOpt | sdl Joi n| sdl Text | sdl Comrent |

sdl Text Ext | sdl Cnct r Qut | sdl Cnctrln| sdl PrcsCreati on| sdl St op" >

<l ENTI TY % sdl Synbol Types4 "sdl I ni t Ti mer| sdl Reset Ti ner | sdl SenDecl | sdl Senilfake| sdl SenG ve|
sdl PrcdProt o| sdl PrcdDecl | sdl PrcdCal | | sdl PrcdSt art | sdl PrcdRet urn">

<IENTI TY % sdl Symbol Types "%sdl Synmbol Typesl; | %sdl Synmbol Types2; | %sdl Synbol Typess3; |

%sdl Synbol Types4; ">

<IENTI TY % nmscSynbol Types1 "mscExt er nal Fr nscl nl i neExpr | nscLi f el i ne| necSemaphor e| mscLost Msg|
mscFoundMsg| nscComment " >

<IENTI TY % nscSynbol Types2 "mscGenNaneAr ea| nscText | necAbsTi meConstr| mscCondi ti on| mscMscRef |
mscl nl i neExpr Zone| nscSave" >

<IENTI TY % nscSynbol Types "%rscSynbol Typesl; | %rscSynbol Types2; ">

<IENTI TY % hnscSynbol Types "hmscDgnFrm hmscPar al | el | hmscSt art | hnscEnd| hmscCondi ti on|
hmscMscRef | hnscAl t er nati vePoi nt ">

<IENTI TY % nscdocSynbol Types "mscdocDgn¥r | mscdocMscRef | mscdocHeader " >

<IENTI TY % unm O assSynbol Types "uml Cl assDgnfrn um Pckg| um C ass| um Comment | um Sys| um Bl kd s|
um Bl k| um PrcsC s| um Prcs" >

<IENTITY % um Depl Synbol Types "um Depl Dgn¥r m um Node| um Conp| um Fi |l e" >

<IENTI TY % um UCSynbol Types "um UCDgnFr nj um UseCase| uml Act or " >

<IENTITY % Synbol Type " (%dl Synbol Types; | %rscSynbol Types; | ¥hnmscSynbol Types; | “mscdocSynbol Types; |
Y%um Cl assSynbol Types; | Yum Depl Synbol Types; | Yum UCSynbol Types;)" >

<l-- Entity for lifeline conponent type -->
<l-- -->

<IENTITY % Li f el i neConponent Type "(nornisusp| neth|coreg|act)">

<l-- Entity for tine interval type -->
<l-- -->

<IENTITY % Ti mel nterval Type "(start|end|tinmeout|constraint)">

<l-- Entity for connector types -->
<l-- -->

<IENTI TY % Connector Type "(voi d| chnl | chnl gate| sdl arrow nscvoi d| nscgat e| nscar r owgat e| hnscar r oy
um cvoi d| unl assoc| um rol e| um dvoi d) " >

Specification & Description Language - Real Time Page 77

http://www.w3.org
http://www.w3.org
http://www.w3c.org

DL SDL-RT standard V2.0

<l-- Entity for side for connectors -->
<l-- -->

<IENTITY % Side "(n|s|wWe|x|y)">

<l-- Entity for end types for connectors -->
<l-- -->

<IENTI TY % Connect or EndType "(voi dend|arrow{ m darrow outltri|outldianfilldiam">

<l-- Entity for link segnent orientation -->
<l-- -->

<IENTITY % Orientation "(h|v)">

<l-- Entity for link types -->
<l-- -->

<IENTITY % Li nkType
"(sbvoi d| dbvoi d| ssvoi d| dsvoi d| chnl | dec| transopt | msg| rt n| i nstcre| assoc| spec| aggr| conp| cnx| dep) " >

<l-- Entity for diagramtypes -->
<l-- -->

<IENTI TY % Di agr anType " (sys|systype| bl k| bl kt ype| prcs| prcstype| prcd| msc| hnmsc| nscdoc| cl ass| usec|
depl) ">

<l-- Element for text in synmbols/links/... -->
<l-- -->
<! ELEMENT Text (#PCDATA) >
<I ATTLI ST Text
id CDATA "0"
>
<l-- Element for lifeline synbol conmponents (MsSC specific) -->
<l-- .
<l-- The "Text" conponent and "wi dth" attribute are only for action synbols -->
<! ELEMENT Li f el i neConponent (Text?)>

<! ATTLI ST Li felineConponent

type %.i f el i neConponent Type; #REQUI RED

hei ght CDATA #REQUI RED

col or CDATA "#000000"

wi dth CDATA t-1
>
<l-- Element for lifeline synbol time intervals (MSC specific) -->
<l-- -->
<! ELEMENT Ti nmel nterval (Text)>

<! ATTLI ST Ti el nt erval
type %l mel nterval Type; #REQU RED
startpos CDATA #REQUI RED
endpos CDATA "-1

Page 78 Specification & Description Language - Real Time

SDL-RT standard V2.0 DL

of f set CDATA #REQUI RED

col or CDATA "#000000"
>
<!-- Elenment for spanned lifelines for spanning synbols (MsSC specific) -->
<l-- -->

<! ELEMENT SpannedLi fel i ne EMPTY>
<I ATTLI ST SpannedLifeline
lifelineld |DREF #REQU RED

>
<!-- Elenment for inline expression zones (MSC specific) -->
<I-- -->
<! ELEMENT Zone EMPTY>
<l ATTLI ST Zone
zoneSynbol | d | DREF #REQU RED
>
<!-- Elenment for synmbols -->
<l-- -->
<l-- The "LifelineConmponent" and "Tinmelnterval" conponents and the "dies" attribute are only for
lifelines synbols -->
<l-- The "Zone" conponent is only for inline expression synbols -->
<!-- The "SpannedLifeline" conmponent is only for spanning synmbols in MSC diagrans -->
<! ELEMENT Synbol (Text+, (((LifelineConponent*), (Tinmelnterval*)) | ((SpannedLifeline*), (Zone*))
| (Synbol *)))>
<! ATTLI ST Synbo
synbol | d I D #REQUI RED
type YSynbol Type; #REQUI RED
xCent er CDATA #REQUI RED
yCenter CDATA #REQUI RED
fi xedDi nensi ons %bool ean; " FALSE"
wi dt h CDATA "10"
hei ght CDATA "10"
di es %ool ean; " FALSE"
col or CDATA "#000000"
>
<!-- Elenment for connectors -->
<l-- -->
<! ELEMENT Connector (Text, Text)>

<I ATTLI ST Connect or

attachedSynbol Id | DREF #REQUI RED
type % Connect or Type; #REQUI RED
i sQut si de %bool ean; #REQUI RED
si de %Si de; #REQUI RED
position CDATA #REQUI RED
endType %Connect or EndType; #REQUI RED

>

<l-- Elenent for link segnments -->

<l-- - >

<! ELEMENT Li nkSegnent EMPTY>

<

ATTLI ST Li nkSegnent
orientation %rientation; #REQU RED

Specification & Description Language - Real Time Page 79

SDL

SDL-RT standard V2.0

I ength CDATA #REQUI RED
>
<!-- Element for links -->
<l-- -->
<l ELEMENT Link (Text, Connector, Connector, LinkSegnent*)>
<! ATTLI ST Link
type %.i nkType; #REQUI RED
t ext Segnent Num CDATA #REQUI RED
col or CDATA " #000000"
>
<!-- El ement PageSpecification -->
<l-- -->
<I-- Attributes for diagram pages; all dinmensions are centinetres -->
<! ELEMENT PageSpeci ficati on EMPTY>
<! ATTLI ST PageSpeci fication
pageW dt h CDATA "21"
pageHei ght CDATA "29.7"
topMar gi n CDATA "1.5"
bott omvargin CDATA "1.5"
leftMargin CDATA "1.5"
ri ght Margin CDATA "1.5"
pageFoot er %ool ean; " TRUE"
>
<!-- Elenment for diagranms -->
<l-- -->
<! ELEMENT Di agram (PageSpeci fication, Symbol, Link*)>
<! ATTLI ST Di agram
type % agr amlype; #REQUI RED
nbPagesH CDATA "
nbPagesV CDATA "
cel | Wdt hMm CDATA " 5"
>

Page 80

Specification & Description Language - Real Time

SDL-RT standard V2.0

SDL

12 - Example systems

12.1 - Ping Pong

-

!

has been introduced.

This example system is a basic send and receive test.
Firsttwo processes pPing and pPong are created.
pPing receives start message from the envirenment
and the game staris. To slow itdown a bita timer

*

=
m
9]
%]
=
]
m
T
3
«
o
=]
3
«
[2]
&
=
T

pFing

[pang]

[ping

pPong

[stari]

Ping pong system view

Specification & Description Language - Real Time

Page 81

SDL SDL-RT standard V2.0

idle

running

idle

start

| ping TO_NAME pPong thait(i()()) | | ping TO_NAME pPong

running running

i

Ping process

Page 82 Specification & Description Language - Real Time

SDL-RT standard V2.0

SDL

idle

ping

| pong TO_NAME pPing

Pong process

Specification & Description Language - Real Time

Page 83

1 SDI- SDL-RT standard V2.0

pPong Erw

idle
< idle >

(’_,/start

ping
< running > \

pong

/ < idle >
F——Ctuait(100)

<, running
t—Ctuait

X ping
< running > \

MSC trace of the ping pong system

Page 84 Specification & Description Language - Real Time

SDL-RT standard V2.0 DL

12.2 - A global variable manipulation

-

This example shows how to handle a global variable.

Both processes fry o modipy & global variable in their start transition.

To do so they first ke the semaphore dedicated to this global variable.
When they are done they give back the semaphore so thatanother
process can access the variable.

In this example we have puttimers in each process so that they keep the
semaphere long encugh to have a conglict while accessing the

global variable.

Note the global variable is defined in an extzrnal C file and resolved at

link time.
*
extern int myGlobalVariable; T
BINARY mySemaphore
(PRIO,INITIAL_FULL)

Global variable manipulation example system

Specification & Description Language - Real Time Page 85

SDL SDL-RT standard V2.0

C)

mySemaphore (FOREYER)

M

myGlobalVWariahle = 5;

myTimer (2000

myTimer

J mySemaphore

Process A

Page 86 Specification & Description Language - Real Time

SDL-RT standard V2.0 SDL

C

j mySemaphore (FOREYER)

myGlobalVWariahle = 10;

% myTimer (2000

myTimer

J mySemaphore

Process B

Specification & Description Language - Real Time Page 87

1 SDI-I ;i i SDL-RT standard V2.0

pProcessA | | pProcessB | | Ere | | mySemaphore

%mgtimer‘
< waiting bl

t.ak
-%mgtimer'
iv
< finished >
%mgtimer‘
< waiting bl

-%mgtimer'

iv

< finished >

MSC trace of the global variable manipulation

Page 88 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

12.3 - Access Control System

This system controls the access to a building. To get in, one need to insert a card and type a code.
The database isin the central block. When starting the system there is no user registered in the
base so the first user needs to be the administrator.

12.3.1 Requirements

[
S

(mHegisi&rUser) (mCardAndCodeOk) (mCardOrCodeko > (mDeleteUser >

0

Either one of the MSCs can be executed indefinitly

Specification & Description Language - Real Time Page 89

SDL SDL-RT standard V2.0

k——mDisplay("Enter card")-———

——————mCard{0x35}——

k- mDisplay(*Entercode™—| 1\
miey (0x36) :
1<10s
miey (0x36) :
miey (0x36) XI'I

k——mDisplay("Please wait"}——

mOpen
k——mDisplay("Dooropen"}——0H

thDoor

mClos

Sandard scenario

Page 90 Specification & Description Language - Real Time

SDL-RT standard V2.0

SDL

k——mDisplay("Enter card")-———

——————mCard{0x35}——

k- mDisplay(*Entercode™—| 1\
————mKey(0x36)}——— !
1<10s
L mKey(0x36)— | ;
L mKey(Ox37— y

k——mDisplay("Please wait"}——

ke —mDisplay("Access refused”}—

Sandard refusal scenario

Specification & Description Language - Real Time

Page 91

SDL

SDL-RT standard V2.0

12.3.2 Analysis

(~:pCentral 3

= mCardAndCode()
= mAddUser()
= mDeleteUser()

< mAdministrator()
< mEmployes(}

< mintruder()

< mOk()

¢_

UserFactory

userFactory|

< mKa()

SN—

1 <<create>=()
getUser(cardld : char®, code : char*) : User
newlUser(cardld : char®, code :char*) : User*

creator

1.%|users

User

isAdministrator - short {frozen}
- cardld : char*
- code : char*

<<create>>(cardld : char*, code : char®, isAdmin : short)
matches(cardld : char®, code - char*) : short
del()

The class diagram shows the relation between pCentral (task) active class and UserFactory and

User passive classes (C++)

Page 92

Specification & Description Language - Real Time

SDL-RT standard V2.0

DL

12.3.3 Architecture

o -
!

Access control system.

This system controls the access to a building. To getin, one need to inserta card

and type a code. The database is in the central block. When starting the system there is no
user registered in the base so the first user needs to be the administrator.

]

MESSAGE "
mCardAndCode(tCardAndCode*),
mAddUser(tCardAndCode*),
mDeleteUser(tCardAnd Code”);

MESSAGE mAdministrator, mEmployee, mintruder, mOk, mKo;

MESSAGE mOpen, mClose, mDisplay;

MESSAGE mCard, mKey;

#include "common.h"
#include "MyConsth"

pCentral
[mCardAndCode

mAddUser,
mDeleteUser]

clnternal

[mAdministrator,
mEmployee

mintruder,
mOk,
mko]
ImOpen, Eny [mCard.| plLocal
mClose, mKey]

mDisplay]

The system is made of two tasks. pCentral and pLocal

Specification & Description Language - Real Time

Page 93

DL SDL-RT standard V2.0

12.3.4 pCentral process

User *foundUser; - . . .
{CardAndCode *pCardAndCode; (]\.rmd getCardNCode(tCardAndCode® pData, char” card, char code@
char cardld[16], code[16];

userFactory = new UserFactory(); ‘

mAddUser(pCardAndCode)

FetCardNCode(pCardA ndCode, cardld, codel

userFactory->newUser(cardld, code);
free(pCardAndCade);

mOk TO_ID SENDER

mCardAndCode (pCardAndCode)
|

FetCardNCode(pCardA ndCode, cardld, codel

foundUser = userFactory->getUser(cardld, code);
free(pCardAndCade);

foundUser |

else

foundUser->isAdministrator
trLl.le fallse
mintruder TO_ID SENDER mAdministrator TO_ID SENDER mEmployee TO_ID SENDER

Page 94 Specification & Description Language - Real Time

SDL-RT standard V2.0

DL

=)

mDeleteUser(pCardAndCode
)

FetCardNCode(pCardA ndCode, cardld, codel

foundUser = userFactory->getUser(cardld, code);
free(pCardAndCade);

oundUser-=del(}

mKo TO_ID SENDER mOk TO_ID SENDER

12.3.5 getCardNCode procedure

strncpy(card, pData->cardld, pData->cardLength);
card[pData->cardLength] = "0';

strncpy(code, pData-=codeld,
pData->codelLength);

code[pData->codelength] = "0";

6

Specification & Description Language - Real Time

Page 95

DL SDL-RT standard V2.0

12.3.6 pL ocal process

unsigned char *pCardld,"pCodeld,*pKey;
int lengthCardid, lengthCodeld, lenMsg lengthKey;

tCardAndCode *pCardAndCode;
short mode;

void Display(char *msg)

void DisplayStar{short numChar)

.

[
mCard(lengthCardid,p Cardid)

Display(msgEnterCard)

I
mode=NORMAL;

Display(msgEnterCode)

I
(idle) % tCode(1000)

pCodeld = (unsigned char *)malloc(CODE_SIZE);
lengthCedeld = 0;

(waitCode)

Page 96 Specification & Description Language - Real Time

SDL-RT standard V2.0 DL

| 1
mkey(lengthKey, pKey) | tCode
I I

*(pCodeld+lengthCedeld) = *pKey; Display(msgEnterCard)
lengthCedeld++;
free(pKey):

=lengthCodeld—= “

== CODE_SIZE else

tCode | | | Display Star(lengthCodeld) | |
I

Display(msgPleaseWait) (waitCode)

lenMsg = sizeof (tCardAndCode);

pCardAndCode = (tCardAndCode *) mallec(lenMsg);
pCardAndCode-=cardLength = lengthCardld;
pCardAndCode-=>cardld = (char *)pCardid;
pCardAndCode->cedelength = lengthCodeld;
pCardAndCode->codeld = (char *)pCodeld;

é

%

NORMAL ADD LSER DELETLUSEH
mCa[g:MnijCode{ mAddUser(lenMsg, mDeleteUser{ lenMsg;
pCardAndCode) pCardAndCode) pCardAndCode)

TO_NAME pCentral TO_NAME pCentral TO_NAME pCentral

‘ mHKey(lengthKey pKey

waitCentral

)

1
{@/ DELETE_USER KEY—
ADD_USER_KEY

mode = ADD_USER; | mode = DELETE_USER; | | mode = NORMAL;

Display(msgEnterNew Card) Display(msgEnterCardToDelets)

(o)

Specification & Description Language - Real Time Page 97

DL SDL-RT standard V2.0

. mEmployee | mAdministrator

Display(
msglnvalid CardOrCode)

Display(msgDoorOpen) Display(msgAdmin)

mOpen TO_ENY
% tDoor{1000)

(admlinMode) }3 tDispItlay[SOO) |

displaying

mClose TO_ENV

Display(
msgEnterCard)

mode=NORMAL;

tDisplay
¢ e

mode = NORMAL;

| | Display(msgOk) | | | | Display(msgKo) | |

| Display(
msgEnterCard)

=7 tDisplay(300)
displaying

Page 98 Specification & Description Language - Real Time

SDL-RT standard V2.0 SDL

12.3.7 Display procedure

#include "string.h”
char *pMsg;
int lenMsg;

D

lenMsg = strlen{msg);
pMsg = (char*)malloc(lenMsg);
strepy(pMsg,msg);

[
mDisplay(lenMsg, pMsg) TO_ENV

®

Specification & Description Language - Real Time Page 99

SDL SDL-RT standard V2.0

12.3.8 DisplayStar procedure

#include "string.h”
char *pMsg;
shorti;

@

pMsg = (char*)mallec(numChar);
for (i=0sicnumChar;i++)
pMsgli]="";

mDisplay(numChar, pMsg) TO_ENV

®

Page 100 Specification & Description Language - Real Time

SDL-RT standard V2.0

SDL

12.3.9 Deployment

Underground

<|P==bNet.

ByTheDoor

bNetid="192.168 1.1"

Y

pCentral
bNetid=50000

bNetid="192.168 2 .49

Y

pLocal
bNetid=50000

The components communicate through |P

Specification & Description Language - Real Time

Page 101

1 SDI-I ;i i SDL-RT standard V2.0

13 - Differenceswith classical SDL

It isdifficult to list al the differences between SDL-RT and SDL even though an SDL developer
would understand SDL-RT and vice versa. Still to be ableto clearly state the differences between
these languages we will pinpoint the main differences in the paragraphs below.

13.1 - Datatypes

Thisisthe most significant difference between SDL and SDL-RT. Classical SDL hasits own data
types and syntax where SDL-RT basically uses ANSI C language. Some symbols have a specific
syntax with SDL-RT since there is no C equivalent instruction such as output, input, save, or
semaphore manipulations.
The advantages are obvious:

» the syntax isknown by all real time developers,

 itimplicitly introduces the concept of pointers that does not exist in SDL,

* it easesintegration of legacy code whereit is quite tricky to do from classical SDL,

» and last but not least it makes code generation out of SDL-RT quite straightforward.

13.2 - Semaphores

Semaphoreis akey concept in real time systems that classical SDL misses. Specific semaphore
symbols have been introduced in SDL-RT to answer the real time developer needs.

13.3 - Inputs

Classical SDL has nice concepts when it comes to dealing with message exchanges. But these
concepts are not so interesting in real time development and are quite tricky to implement on a
real target or operating system. That iswhy SDL-RT has removed the following concepts:
enabling conditions when receiving a message, internal messages, two levels priority messages.

13.4 - Names

Classical SDL uses exotic names for some well known concepts such as "signal” whereit is basi-
cally related to a"message”. Since "message” is the usual name in Real Time Operating Systems
SDL-RT uses the same term.

When it comes to object orientation classical SDL talks about "type" instead of the usual "class'
term. SDL-RT uses the common developer word "class".

13.5 - Object orientation

Classical SDL uses"virtua", "redefined", and "finalized" when it comes to object oriented con-
cepts. For example a super class should specify atransition is"virtual" so that the sub classis

Page 102 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

allowed "redefine” or "finalize" it. Thisis C++ like but actually quite painful when it comes to
write and does not make things any clearer. SDL-RT takes the Java notation instead wherethereis
no need to specify anything to be able to redefine it in a sub class.

Specification & Description Language - Real Time Page 103

1 SDI-I ;i i SDL-RT standard V2.0

14 - Memory management

Real time systems need to exchange information. The best way to do so isto have areserved
chunk of shared memory that several tasks can access. SDL-RT implicitly runs on such an under-
lying architecture since it supports global variables and exchanges message parameters through
pointers. That raises memory management rules to follow to ensure a proper design.

14.1 - Global variables

SDL-RT processes can share global variables. Thisisvery powerful but also very dangerous since
the data can be corrupted if manipulated without caution. It is strongly recommended to use sema-
phores to access global variablesto be sure data is consistent. An example of such adesignis
given later in this document.

14.2 - M essage parameters

Parameters of a message are passed through a pointer. This implies the data pointed by the send-
ing process will be accessible by the receiving process. Therefore a good design should meet the
following rules:
» Sending processes allocate specific memory areas to store parameters,
* Once the message is sent the parameter memory area should never be manipulated again
by the sending process,
* Receiver processes are responsible for freeing memory containing message parameters.

Page 104 Specification & Description Language - Real Time

SDL-RT standard V2.0

SIIRT

15 - Keywords

The following keyword have a meaning at in some specific SDL-RT symbols listed below:

keywords concerned symbols
Task definition
PRI O Task creation
Continuous signal

TO_NAMVE
TOID
TO ENV M essage output
VIA
FOREVER . .
NO VWAI T semaphore manipulation
>| <| >:| <:| ! =, ==
true, false, decision branches
el se
USE
MVESSAGE . .
NVESSAGE. LI ST additional heading symbol
STACK

Table 2: Keywordsin symbols

Specification & Description Language - Real Time

Page 105

1 SDI-I ;i i SDL-RT standard V2.0

16 - Syntax

All SDL-RT names must be a combination of alphabetical characters, numerical characters, and
underscores. No other symbols are allowed.

Examples:

nmyPr ocessNanme
my_procedure_nane
bl ock_1

_senmaphor eNane

Page 106 Specification & Description Language - Real Time

SDL-RT standard V2.0 1 SDLI ;i i

17 - Naming convention

Since some SDL-RT concepts can be reached through their names (processes, semaphores) each
name in the system must be unique. Thiswill make the design more legible and ease the support
of SDL-RT in atool.
It is suggested to use the following convention for names:
* block names should start with'b’,
process names should start with 'p’,
timer names should start with 't’,
semaphore names should start with'’'s’,
global variables should start with'g'.

Specification & Description Language - Real Time Page 107

1 SDI-I ;i i SDL-RT standard V2.0

18 - Lexical rules

A subset of the BNF (Backus-Naur Form) is used in these pages :
<traditional English expression> asit says...

[<stuff>] stuff is optional
{<stuff>}+ stuff is present at least one or more times
{<stuff>}* stuff is present O or more times

Page 108 Specification & Description Language - Real Time

SDL-RT standard V2.0

19 - Glossary

ANSI American National Standards Intitute

BNF Backus-Naur Form

ITU International Telecommunication Union

MSC Message Sequence Chart

OMG Object Management Group

RTOS Rea Time Operating System

SDL Specification and Description Language

SDL-RT Specification and Description Language - Real Time
UML Unified Modeling Language

XML eXtensible Markup Language

Specification & Description Language - Real Time

Page 109

http://www.omg.org
http://www.itu.int
http://www.ansi.org
http://www.uml.org
http://www.sdl-forum.org
http://www.sdl-rt.org
http://www.w3.org

1 SDI-I ;i i SDL-RT standard V2.0

20 - M odifications from previous releases

20.1 - Semaphore manipulation

20.1.1V10to V1l
The semaphore take now returns a status that indicates if the take attempt timed out or was suc-
cessfull. The semaphore lifeline gets grayed when the semaphore is unavail able.

20.2 - Object orientation

20.2.1V11toV1z2
There has been an error in the object orientation chapter: it is not possible to declare a process
class or ablock classin ablock class definition diagram.

20.22V12toV2.0

» UML classdiagram has been introduced
* UML deployment diagram has been introduced
* Object creation symbol introduced in the behavior diagram

20.3 - M essages

20.3.1V11toV1z2
» Messages now needs to be declared.
* Message parameters are now typed with C types.
» Parameter length can be omited if the parameter is structured. Then the length isimplic-
itly the sizeof the parameter type.
» The VIA concept has been introduced.

20.4 - MSC

204.1V11toV1z2
» Saved messages representation introduced.

20.5 - Task

20.5.1V12toV20
STACK parameter has been added as a parameter when creating a task.

Page 110 Specification & Description Language - Real Time

SDL-RT standard V2.0

20.6 - Organisation

20.6.1V12toV20
Chapters have been re-organized.

Specification & Description Language - Real Time

Page 111

1 SDI- SDL-RT standard V2.0

Page 112 Specification & Description Language - Real Time

SDL-RT standard V2.0

21 - Index

A

Action

symbol 23
Action symbol

MSC symbol 53
Additional heading symbol 31
Agents9
Aggregation

class 69

node 75
Association 68

Block
class57

C

call

procedure 26
Cardinality 68
channels 11
Class

active 66

block 57

definition 65

passive 66

process 58
Comment 28

MSC symbol 53
Component 72
Composition 70
Connection 73
Connectors 27
Continuoussignal 22
Coregion 50

creation
task 26

D

Data type

difference with classical SDL 102
Data types 56
Decision 23
Declaration

message 36

procedure 35

process 34

semaphore 37

timer 37

variables 30
Dependency 74
Diagram

architecture 9

behavior 14

class 65

communication 11

contained symbols 76

deployment 72

MSC 38
Distributed system 72

E

else
decision 24
keyword 105
Environment
definition 9
message output 19
Extension 29

Specification & Description Language - Real Time

Page 113

NTIRT,

SDL-RT standard V2.0

=

false
decision 24
keyword 105
transition option 27
FOREVER
keyword 105

G

Generalisation 68
give
semaphore 25

HMSC 54

if 23
ifdef 27
Input
difference with classical SDL 102

message 16
instance
MSC 38

K

Keywords 105

L

Lexical rules 108

M

Memory
management 104
MESSAGE
keyword 105
M essage
communication principles 11
declaration 36
input 16
memory management 104
MSC 41
output 17
parameters 104
save 22
MESSAGE_LIST
keyword 105
MSC 38
action 53
agent instance 38
comment 53
reference 51
semaphore 39
text symbol 53

N

Naming
convention 107
difference with classical SDL 102
syntax 106
NO WAIT
keyword 105
Node 72

O

Object

difference with classical SDL 102
OFFSPRING

procedure 26
output 17

Page 114

Specification & Description Language - Real Time

SDL-RT standard V2.0

P

Package 70
PARENT
procedure 26
PRIO
continuous signal 23
keyword 105
Procedure
call 26
declaration 35
return 30
start 30
Process
behavior 14
class 58
declaration 34
priority 34

R

reference
MSC 51
return
procedure 30

S

save 22
SDL-RT
Lexical rules 108
Semaphore
declaration 37
difference with classical SDL 102
give 25
global variable 104
MSC 39
take 24
SENDER
procedure 26
Specialisation 68
STACK

keyword 105
Stack

size definition 31
Start

procedure 30

symbol 14

timer 25
State 14

MSC 44
Stereotype 65
Stop

symbol 15

timer 25
Storage format 77
Symbol

additional heading 31

in diagram 76

ordering 31

text 30
Synchronous calls

MSC 43
System 9

T

take
semaphore 24
Task
creation symbol 26
Text
MSC symbol 53
symbol 30
Timeinterval
MSC 48
Timer
declaration 37
MSC 46
start 25
stop 25
TO_ENV 19
keyword 105
TO_ID 17
keyword 105
TO_NAME 18

Specification & Description Language - Real Time

Page 115

NTIRT,

SDL-RT standard V2.0

keyword 105
Transition option 27
true

decision 24

keyword 105

transition option 27

U

USE
keyword 105

Vv

VIA 19
keyword 105

X

XML
data storage 77

Page 116

Specification & Description Language - Real Time

	1 - Introduction
	2 - Architecture
	2.1 - System
	2.2 - Agents

	3 - Communication
	4 - Behavior
	4.1 - Start
	4.2 - State
	4.3 - Stop
	4.4 - Message input
	4.5 - Message output
	4.5.1 To a queue Id
	4.5.2 To a process name
	4.5.3 To the environment
	4.5.4 Via a channel or a gate

	4.6 - Message save
	4.7 - Continuous signal
	4.8 - Action
	4.9 - Decision
	4.10 - Semaphore take
	4.11 - Semaphore give
	4.12 - Timer start
	4.13 - Timer stop
	4.14 - Task creation
	4.15 - Procedure call
	4.16 - Connectors
	4.17 - Transition option
	4.18 - Comment
	4.19 - Extension
	4.20 - Procedure start
	4.21 - Procedure return
	4.22 - Text symbol
	4.23 - Additional heading symbol
	4.24 - Object creation symbol
	4.25 - Symbols ordering

	5 - Declarations
	5.1 - Process
	5.2 - Procedure declaration
	5.2.1 SDL-RT defined procedure
	5.2.2 C defined procedure

	5.3 - Messages
	5.4 - Timers
	5.5 - Semaphores

	6 - MSC
	6.1 - Agent instance
	6.2 - Semaphore representation
	6.3 - Semaphore manipulations
	6.4 - Message exchange
	6.5 - Synchronous calls
	6.6 - State
	6.7 - Timers
	6.8 - Time interval
	6.9 - Coregion
	6.10 - MSC reference
	6.11 - Text symbol
	6.12 - Comment
	6.13 - Action
	6.14 - High-level MSC (HMSC)

	7 - Data types
	7.1 - Type definitions and headers
	7.2 - Variables
	7.3 - C functions
	7.4 - External functions

	8 - Object orientation
	8.1 - Block class
	8.2 - Process class
	8.3 - Class diagram
	8.3.1 Class
	8.3.2 Specialisation
	8.3.3 Association
	8.3.4 Aggregation
	8.3.5 Composition

	8.4 - Package
	8.4.1 Usage in an agent
	8.4.2 Usage in a class diagram

	9 - Deployment diagram
	9.1 - Node
	9.2 - Component
	9.3 - Connection
	9.4 - Dependency
	9.5 - Aggregation
	9.6 - Node and components identifiers

	10 - Symbols contained in diagrams
	11 - Textual representation
	12 - Example systems
	12.1 - Ping Pong
	12.2 - A global variable manipulation
	12.3 - Access Control System
	12.3.1 Requirements
	12.3.2 Analysis
	12.3.3 Architecture
	12.3.4 pCentral process
	12.3.5 getCardNCode procedure
	12.3.6 pLocal process
	12.3.7 Display procedure
	12.3.8 DisplayStar procedure
	12.3.9 Deployment

	13 - Differences with classical SDL
	13.1 - Data types
	13.2 - Semaphores
	13.3 - Inputs
	13.4 - Names
	13.5 - Object orientation

	14 - Memory management
	14.1 - Global variables
	14.2 - Message parameters

	15 - Keywords
	16 - Syntax
	17 - Naming convention
	18 - Lexical rules
	19 - Glossary
	20 - Modifications from previous releases
	20.1 - Semaphore manipulation
	20.1.1 V1.0 to V1.1

	20.2 - Object orientation
	20.2.1 V1.1 to V1.2
	20.2.2 V1.2 to V2.0

	20.3 - Messages
	20.3.1 V1.1 to V1.2

	20.4 - MSC
	20.4.1 V1.1 to V1.2

	20.5 - Task
	20.5.1 V1.2 to V2.0

	20.6 - Organisation
	20.6.1 V1.2 to V2.0

	21 - Index

