specification & description language - real time

@® Graphical language to specify
and design real time
and embedded software

| oviect

Date ® December 16th 2002

Version ® 1.2

Reference @ http://www.sdl-rt.org ’

1 SDI- SDL-RT standard V1.2

Page 2 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Introduction = - = - === cmcmmme e e 7
Architecture--- - - - - - - oo e e 8
Y £S 1 EORP 8
0 < PSSP 8
CoOmMMUNICALION == = - == = - == s o m s o e e oo 10
Behavior ------- - m e oo 13
= 1 TR 13
S - (= S PST TR 13
S 0 o ST SR 14
IMIESSAgE INPUL ...ttt sttt b et b et e e e e e b e bt b e se e e bt e e e e e e et et e nbenbeneennis 15
eSSz o T o0 11 o | PR 16
Toaqueueld 16
To aprocess name 17

To the environment 18
Viaachannel or agate 18

IMIESSAgE SAVE.......ccureeeeeeree st et ettt s e s e e st e s e e n e e s e e e n e e saeesane e ame e er e e nnnesne e neenneenrneea 21
CONLINUOUS SIONEeevieieeieeieeste ettt e te e ete e bessaesseesseeseesaeesseensesseenseensesseesseensennnans 21
o (o) o SO TRPRPSPSRR 22
D=0 o o TS 22
SEMAPNOTE TAKE ...ttt et e s e et eeaeeste et e saeesseensesneesteensesneesennnans 23
SEMBPNOIE GIVE..... ittt bbbt b e bt b et e et et e bbb e ne e 24
BT G = SRR 24
QIS S (] o TSRS 24
QLIS Qe == 11 oo PRSP 25
010 o (U1 0= o || O 25
(O01 0] 07 oi (0] £ TP PR PR 26
TrANSITION OPLION ...ttt b e bbbt e se e e e e e e e e e ne e 26
(©0 001007 o | USRS 27
= 1 T o TSRS 28
0100 (U1 L = SR 29
e 0Te= o (U1 L= £ U] o SR 29
TEXE SYMIDIOL ...t e b et eere e re e e ae e aeenaesneenrennnans 29
Additional heading SYMDOIooiiiii e 30
SYMDOIS OFUEITNG ..ttt e bbbt b et se e e e e e e e nn e e ne e 30
Declarations - - - = === - - - oo 32
PIOCESS.....ee et h e e e b et e b e e e be e e e ne e e enr e e e nne e e neeenes 32
Procedure dECIaratioN............coceeie it r et s re et ne e nre s 33
SDL-RT defined procedure 33
C defined procedure 34
IMTESSATES ...ttt n e e e n e n e e n e 34
L= £ R S PSTRR 35
SEMBPNOIES ...ttt b e b e bt bt bt Re e e e e et e e n e nn e ne e 35
Y S e e 36
0 |] =TSSR 36

Specification & Description Language - Real Time Page 3

1 SDI-I ;i i SDL-RT standard V1.2

SEMAPNOIE FEPIESENTALION ... ettt e b bbbt e e e e e e nns 37
Semaphore MAaNIPUIBLIONS.........ccuiiiiiiie ettt e e b e e sse e ebeesreeesneesseesnneenreaans 37
IMESSAZE EXCNANGE.cueeetieitie ettt ettt ettt e et e e s e e teesseeeaseesseessteenseeenseeaseesnseereennns 39
SYNCIONOUS CAIIS ...ttt nee s 41
S (RSP 42
B L= T USRS 44
L ATCR 1= 7= S 46
(@0 (=0 1o o TSRS 48
IMESC FEFEIEINCE ...t b et s sb et b et e seesbeeneeneens 49
TEXE SYMDIOL ...t b e bbb bt e e e e e e e ne e 51
(001111107 o TR O TR 51
o 1 0] o PSSR 51
High-16VEl MSC (HMSC)ciiieiiceee ettt st st a e e e stennennenneas 52
Datatypes ----------cccmommem e e e e e e e e m e m e e m e 54
Type definitioNS @aNA NEAJEN'Scviiiiie et 54
LY== o = PR 54
CIUNCHIONS ...ttt sttt b e b e st e st et et et et e s beebenbeenenne e st e e e neeneas 54
EXEErNE] TUNCHIONS ...ttt sttt ettt snenbe b 54
Memory management - - - - - - - - - - - - - - - - oo oo 55
GlODEl VAIADIES ..o bbb nr s 55
M ESSAOE PAIAIMELENSceereeieeieree et e s e e sre e sn e e sne e sn e e s re e e nn e e nn e e nnneenreennes 55
N1 G e LR R 56
SEMANEIC - - - - - - - m o e oo e 57
Object orientation - ------ - - - - - oo oo oo 58
PACKBJE ...t e bR a b et ae e e 58
BIOCK ClaSSottt st bbbttt et st e bt e sbe bt e e e e et 58
01015 Y o = TSRS 60
Symbolscontained indiagrams - - ----------------------------o oo 68
Textual representation - -------------m oo 69
Example systems - - - - - - - - - oo oo e oo 73
PING PONQ ..ttt e R bRt R e e e e e 73
A global variable ManipUlation.............cceiieieiieie e sre e 77
Keywords --------ccmmmmomcmecn e i ee e e e e em e e e e e e 81
Differenceswith classical SDL - ---------------------“--- - 82
D= = A 01T PSPPSR 82
SEMBPINOIES ...ttt bbbttt e e e e b e e bt bRt ae e e n e e ns 82
01U LTSRN 82
INBITIES. ...ttt h e et e s e e b e e ae e e Re e sae e e s e e aRe e e s e e sRe e e ne e ame e e ar e e emeeenneeaneeereenneennnan 82
(@ o] L= wle g 1= o1 10] o OSSP P PO 82
Modificationsfrom previousreleases - - - -------------------“““------------ 84
Semaphore MaNIPUILTON..........c.eieeieeie ettt e s e e e e s teeneesreesaeenneeneenseenns 84

Page 4 Specification & Description Language - Real Time

SDL-RT standard V1.2

V10toV1184
Object orientation
V11ltoV1284

Specification & Description Language - Real Time

Page 5

1 SDI- SDL-RT standard V1.2

Page 6 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

1 - Introduction

Asitsname states, SDL-RT isbased on SDL standard from I TU extended with real time concepts.

SDL has been developed in the first place to specify telecommunication protocols but experience
showed some of its basic principles could be used in awide variety of real time and embedded
systems. Its main benefits are:

* architecture definition,

» graphical finite state machine,

 object orientation.

But SDL was not meant to design real time systems and some major drawbacks prevented it to be
widely used in the industry:

» obsolete data types,

 old fashioned syntax,

* NO pointer concept,

* no semaphore concept.

SDL being agraphical language it is obviously not suited for any type of coding. Some parts of
the application still need to be written in C or assembly language. Furthermore legacy code or off
the shelf libraries such as RTOS, protocol stacks, drivers have C APIs. Last but not least thereis
no SDL compilers so SDL need to be trandlated into C code to get down to target. So all SDL ben-
efits are lost when it comesto real coding and integration with real hardware and software.

Considering the above considerations areal time extension to SDL needed to be defined that
would keep the benefits of SDL and solve its weaknesses. The ssimpler the better ! SDL-RT was
born based on 2 basic principles:

* Replace SDL datatypesby C,

* Add semaphore support in the behavior diagrams.

Theresult, SDL-RT, isa:

simpler,

object oriented,

graphical language,

supporting al basic real time concepts,
based on standard languages.

Specification & Description Language - Real Time Page 7

1 SDI-I ;i i SDL-RT standard V1.2

2 - Architecture

2.1 - System

The overall design is called the system and everything that is outside the system is called the
environment. There is no specific graphical representation for the system but the block represen-
tation can be used if needed.

2.2 - Agents

The system can be decomposed in functional blocks. A block does not imply any physical imple-
mentation on the target, it is a structuring element. A block can be further decomposed in blocks
and so on allowing to handle large systems. A block symbol is asolid rectangle with its namein
it:

MyBIlock

A simple block example.

When the SDL-RT system is decomposed down to the simplest block, the way the block fulfilsits
functionality is described with processes. A lowest level block can be composed of one or several
processes. To avoid having blocks with only one processit is allowed to mix together blocks and
processes at the same level e.g. in the same block.

A process symbol is arectangle with cut corners with its namein it:

A simple process example.

A processis basically the code that will be executed. It is afinite state machine based task (Cf.
“Behavior” on page 13) and has an implicit message queue to receive messages. It is possible to
have several instances of the same process running independently. The number of instances
present when the system starts and the maximum number of instances are declared between

parenthesis after the name of the process. The full syntax in the process symbol is:

<process nhame>[(<number of instances at startup>, <maximum nunber of instances>)]

If omitted default values are 1 for the number of instances at startup and infinite for the maximum
number of instances.

Page 8 Specification & Description Language - Real Time

SDL-RT standard V1.2

NTIRT,

MyProcess(0,10) ’

An exampl e process that has no instance at startup and a maximum of 10 instances.

The overall architecture can be seen as a tree where the leaves are the processes.

MySystem
blockA blockB
processA 1l ’ ‘processAZ(O,lO)‘ blockC ‘proceﬁsBl(l,l)’
‘ processC1 ’ ‘ processC2 ’ ‘ processC3 ’

A view of the architecture tree

When viewing a block, depending on the size of the system, it is more comfortable to only repre-

sent the current block level without the lower agents.

Specification & Description Language - Real Time

Page 9

1 SDI-I ;i i SDL-RT standard V1.2

3 - Communication

SDL-RT isevent driven, meaning communication is based on message exchanges. A message has
aname and a parameter that is basically a pointer to some data. Messages go through channels
that connect agents and end up in the processes implicit queues.

Channels have names and are represented by a one-way or two-ways arrows. A channel nameis
written next to the arrow without any specific delimiter. The list of messages going in a specific
way are listed next to the arrow between brackets and separated by commas. Messages can be
gathered in message lists, to indicate a message list in the list of messages going through a chan-
nel the message list is surrounded by parenthesis. Note the same message can be listed in both
directions.

channelName
. >
aOneWayChannel example: [messagel.
(messagel istl),
message?]
channelName
alwoWayChannel example: - -
[message4, [messagel,
messages, message2,
message?] (messagel istl)]

Channels end points can be connected to: the environment, another channel or a process. Graphi-
cally achannel can be connected to a block but it is actually connected to another channel inside
the block. To represent the outside channel s connected to the block at the upper architecture level,
ablock view is surrounded by aframe representing the edge of the block. The upper level chan-
nels connected to the block are then represented outside the frame and channels inside the block
can be connected to these upper level channels. Note a channel can be connected to several chan-
nels. In any case consistency is kept between levels e.g. all messagesin achannel are listed in the
upper or lower level channels connected to it.

Page 10 Specification & Description Language - Real Time

SDL-RT standard V1.2

NTIRT,

Example:
Let us consider an SDL-RT system made of two blocks: blockA and blockB.
mySystem A [messages,
message9]
chEnvB
Y [message7]
chEnvA chAB
p| DIOCKA | g p| DblockB
[messagel, [messaged] [messages,
message2, messaged]
message3]

An example system view

The channels chEnvA and chEnvB are connected to the surrounding frame of the system ny Sys-
t em They define communication with the environment, e.g. the interface of the system. chEnvA
and chAB are connected to bl ockA and define the messages coming in or going out of the block.

chAB
blockA A [messageb,
messages]
chABD
Y [messaged]
chEnvA chEnvAC p| DlockC | g chCD p| blockD
[messagel, [message4, [messageb,
message2, messagel0, messagel?2,
message3] messagell] messagel3]

[messagel4]

An inner block view

The inner view of block blockA showsit is made of the blocks blockC and blockD and of the pro-
cess processE. chEnvAC is connected to the upper level channel chEnvA and chABD is connected

Specification & Description Language - Real Time

Page 11

1 SDI-I ;i i SDL-RT standard V1.2

to the upper channel chAB. The flow of messages is consistent between levels since for example
the messages coming in block blockA through chEnvA (messagel, message2, message3) are also
listed in chEnvAC.

Page 12 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

4 - Behavior

First of all a process has an implicit message queue to receive the messages listed in the channels.
A process description is based on an extended finite state machine. A process state determines
which behavior the process will have when receiving a specific stimulation. A transition is the
code between two states. The process can be hanging on its message queue or a semaphore or run-
ning e.g. executing code.

SDL-RT processes run concurrently; depending on the underlying RTOS and sometimes on the
target hardware the behavior might be slightly different. But messages and semaphores are there
to handle process synchronization so the final behavior should be independent of the RTOS and of
the hardware. Since SDL-RT is open to any C code it is up to the designer to make sure this state-
ment staystrue!

Note that in a state diagram the previous statement is always connected to the symbol upper frame
and the next statement is connected to the lower frame or on the side.

4.1 - Sart

The start symbol represent the starting point for the execution of the process:

(D

Sart symbol

The transition between the Start symbol and the first state of the processis called the start transi-
tion. Thistransition isthe first thing the process will do when started. During thisinitialization
phase the process can not receive messages. All other symbols are allowed.

4.2 - Sate

The name of the process state is written in the state symbol:

< <state name> >

Sate symbol

The state symbol means the processis waiting for some input to go on, the allowed symbolsto
follow a state symbol are:
* message input
the message could be coming from an external channel, or it could be a timer message
started by the processitself.
* continuous signal

Specification & Description Language - Real Time Page 13

1 SDI-I ;i i SDL-RT standard V1.2

when reaching a state with continuous signals, the expressionsin the continuous signals
are evaluated following the defined priorities. All continuous signal expressions are eval-
uated before the message input !
* save
the incoming message can not be treated in the current process state. It is saved until the
process state changes. When the process state has changed the saved messages are
treated first (before any other messages in the queue but after continuous signals).
Some transitions can be valid for several states, the different state names are then listed separated
by acomma. A star ('*’) means all states.

Examples:
, N idle,
idle maintenance
| | ‘

megl msg2 msg1 <a > o>
In statei di e nsgl can be Messagemsgl can In statesi dl e and
recelved and msg2 is saved. be received in any mai nt enance the
state expression a>0 is

first evaluated.

A process in a specific state can receive severa types of messages or treat several continuous sig-
nals. To represent such a situation it is possible to have several message inputs connected to the
state or to split the state in several symbols with the same name.

Examples:

() () (o

| D

sigl si g2 f sigl f sigl

Two ways of writing in statei dl e,
si gl or si g2 can bereceved.

4.3 - 3op
A process can terminate itself with the stop symbol.

Page 14 Specification & Description Language - Real Time

S— ITIRT
X

Sop symbol

Note a process can not kill another process, it can only kill itself.
Thereis no syntax for that symbol.

4.4 - M essage input

The message input symbol represent the type of message that is expected in an SDL-RT state. It
alwaysfollows an SDL-RT state symbol and if received the symbols following the input are exe-
cuted.

<Message name>
[([<data | ength>,]
IKpoi nter on data>)]

Message input symbol

Aninput has a name and can come with parameters. To receive the parametersit is necessary to
declare at |east one variable that will be assigned to point on the parameters. If the parameter
length is unknown, because the parameters are unstructured data, it is also possible to get the
parameter length assigned to a pre-declared variable.

The syntax in the message input symbol is the following:
<Message nane> [([<data |l ength>,] <pointer on data>)]

<dat a | engt h>isavariable that needs to be declared.
<poi nter on data>isavariablethat needsto be declared asani nt .

Examples:

| ConReq(unsi gned char *),
ConConf ,

MESSAGE \
|
D sReq(nmyStruct *); |

| ong myDat aLengt h;
unsi gned char *myDat a;
mySt ruct *pDat a;

ConReq Di sReq
EryrryDaD?;;;lLen, ConConf (pDat a)

Specification & Description Language - Real Time Page 15

1 SDI-I ;i i SDL-RT standard V1.2

4.5 - M essage output

A message output is used to exchange information. It puts datain the receiver’s message queuein
an asynchronous way.

Message output symbol

When a message has parameters, a pointer to the parametersis given. If the parameter is struc-
tured, itslength does not need to be specified sinceit isbasically asi zeof of the parameter type.
Otherwiseitslength is given as afirst parameter of the output symbol.

The syntax in the message output symbol can be written in several ways depending if the queueld
or the name of the receiver isknown or not. A message can be sent to a queue Id or to a process
name or viaa channel or agate. When communicating with the environment, a special syntax is
provided.

45.1Toaqueueld

KVESSage name>

[([<data | ength>,]
Kpoi nter on data>)]
TO_ID

I<r ecei ver queue id>

Message output to a queue id

The symbol syntax is:
<nessage nanme>[([<data | ength>] <pointer on data>)] TO_ID <receiver queue id>
It can take the value given by the SDL-RT keywords:

PARENT The queue id of the parent process.

SELF The queue id of the current process.

OFFSPRI NG The queueid of the last created process if any or NULL if none.
SENDER The queue id of the sender of the last received message.

Page 16 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Examples:
r-- - - - - - - - - - - — — ~
|NESSAGE 3
| ConReq(unsi gned char *), |
ConConf ,
| D sReq(nmyStruct *); |
Lo - - -
| ong myDat aLengt h;
unsi gned char *myDat a;
myStruct *pDat a;
conReq ConConf TO ID D sReq
g.éS?D gxgg\r?.) aCal cul at edRecei ver (Pigg\;) To1b
ConReg are unstructured There is no parameter Parameter length does
parameters so the length associated with the not need to be specified:
needs to be specified. message ConConf . itisimplicitly
si zeof (myStruct).
4.5.2 To a process hame

KVESSage nane>

[([<data | ength>,]
Kpoi nter on data>)]
TO_NAMVE

I<r ecei ver name>

Message output to a process name

The syntax is:

<nmessage name>[([<data | ength>,] <pointer on data>)] TO NAME <receiver nane>
<recei ver nane> isthe name of aprocessif unigue or it can be ENv when simulating and the
message is sent out of the SDL system.

Examples:
ConReq ConReq
(OXFF, ny Dat a) grgy'?&;naELength, nyDat a)
TO_NANE ENV r ecei ver Process
Note:

If several instances have the same process name (several instances of the same process for exam-
ple), the’ TO_NAME’ will send the message to the first created process with the corresponding
name. Therefore this method should no be used when the process name is not unique within the
system.

Specification & Description Language - Real Time Page 17

1 SDI-I ;i i SDL-RT standard V1.2

45.3 To the environment

KVESSage name>

[([<data | ength>,]
Kpoi nter on data>)]
TO_ENV

<C nacro name>

Message output to environment

The symbol syntax is:

<nessage name>[([<data | ength>,] <pointer on data>)] TO ENV <C macro name>

<C macr o name> iSthe name of the macro that will be called when this SDL output symbol is hit.
If no macro is declared the message will be sent to the environment.

Example:
ConReq IConReq
(OxFF, nyDat a) (nyDataLengt h, nyDat a)
TO_ENV MESSAGE_TO HDLC
In this second example the generated code will be:
MESSAGE _TO HDLC(ConReq, nyDat aLengt h, nmyDat a)
Note:

When sending data pointed by <pointer on data>, the corresponding memory should be allocated
by the sender and should be freed by the receiving process. Thisis because thismemory areais
not copied to the receiver; only the pointer value is transmitted. So after being sent the sender
should not use it any more.

4.5.4 Viaachannel or a gate

A message can be sent via a channel in the case of a process or via a gate in the case of a process
class.

KVESSage name>

[([<data | ength>,]

Kpoi nter on data>)]

M A

kchannel or gate nanme>

Message output via a channdl or a gate

The symbol syntax is:

<nmessage nane>[([<data | ength>,] <pointer on data>)] VIA <channel or gate name>
<channel or gate nane> isthe name of the channel or gate the message will go through.

This concept is especially usefull when using object orientation since classes are not supposed to
know their environment; so messages are sent via the gates that will be connected to the surroud-
Ing environment when instanciated.

Page 18 Specification & Description Language - Real Time

SDL-RT standard V1.2

Examples:
mySystem A [message?]
chEnvB
v [messaged]
chEnvA chAB
[messagel] [message2] [message3)- - .
e I
Phe I
e I
e |
- - |
e I
- - I
e |
e |
e |
- - I
e |
- |
message?2 nessage2 '
VI A [TO_NAME

With the architecture defined above, both outputs are equivalent.

Specification & Description Language - Real Time

Page 19

SDL SDL-RT standard V1.2

nmyPr ocess
[msg2]
cl nt ernal
;7 gate2 T N

upper Level Channel p@Jatel
[msgl] |
AN /
s/ SN0 - —-=——=-—-——-—~ /
7 /
Y /
/ /
my Gat e2
[msg2]

myGat el

[msgl]

myClass

aProcess sendsnmsg2 to myPr ocess without knowing its name nor its PID

Page 20 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

4.6 - Message save

A process may have intermediate states that can not deal with new request until the on-going job
is done. These new requests should not be lost but kept until the process reaches a stable state.
Save concept has been made for that matter, it basically holds the message until it can be treated.

<Message nane>

Save symbol

The Save symbol is followed by no symbol. When the process changes to a new state the saved
messages will be the first to be treated (after continuous signalsif any).

The symbol syntax is:

<nessage name>

Even if the message has parameters.

Example:

‘IIIIIIHIII' I‘I%HHHHHHI"

[[|

nsgl < nsg2 < nsg3 nsg3 < nsgl <

(o) (o () (o)

Let’'sconsider the above pro- msg3, msg2, nsgl. neg3 will Sincensg3 has been saved it
cessinstatei nt er torecelve besaved, nsg2 will makethe will first be treated and
the following messages. process go to state st abl e. finaly nsg1.

4.7 - Continuous signal

A continuous signal is an expression that is evaluated right after a process reaches a new state. It
is evaluated before any message input or saved messages.

<condi tion
expressi on>

Continuous signal symbol

The continuous signal expression to evaluate can contain any standard C expression that returns a
C true/false expression. Since an SDL state can contain several continuous signal a priority level

Specification & Description Language - Real Time Page 21

1 SDI-I ;i i SDL-RT standard V1.2

needs to be defined with the PRI O keyword. Lower values correspond to higher priorities. A con-
tinuous signal symbol can be followed by any other symbol except another continuous signal or a
message input. The syntax is:

<C condi ti on expression>

PRI O <priority | evel >

Example:

< idle >
| |
msgl < < a>5 > <b<10) ¥ (c!c>
PRIO 2 PRIO 1

In the above example, when the processgets evaluate expression a > s. If the expressionis
in state idle it will first evaluate expression not true or if the process stayed in the same
(b<10) || (ct=0). If theexpressionisnottrueor stateit will executensgl transition.

if the process stayed in the same state it will

4.8 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Example:

¥ Say hi to your friend ¥/
printf("Hello world '\ n");
for (i=0;i<MAX;i++)

{

newString[i] = oldString[i];

4.9 - Decision

A decision symbol can be seen asa C switch / case.

or

Decision symbols

Page 22 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Sinceit isgraphical and therefore uses quite some space on the diagram it is recommended to use
it when its result modifies the resulting process state. The decision symbol is a diamond with
branches. Since adiamond is one of the worst shape to put text init, it can be a"diamonded” rect-
angle. Each branch can be seen as a case of the switch.
The expression to evaluate in the symbol can contain:

» any standard C expression that returns a C true/fal se expression,

» an expression that will be evaluated against the values in the decision branches.
The values of the branches have keyword expressions such as:

e > <, >=, <=, 1=, ==

« true, false, else
The el se branch contains the default branch if no other branch made it.

Examples:
aVal ue
== myVal ue
bVal ue
true fal se el se == 2 el se < 2

4.10 - Semaphoretake
The Semaphore take symbol is used when the process attempts to take a semaphore.

[<status> =]
<senmaphor e nane>
(<tinmeout option>)

Semaphore take symbol

To take a semaphore, the syntax in the ‘ semaphore take SDL-RT graphical symbol’ is.
[<status> =] <semaphore name>(<timeout option>)
where <t i meout option>is
« FOREVER
Hangs on the semaphore forever if not available.
« NOWAIT
Does not hang on the semaphore at al if not available.

Specification & Description Language - Real Time Page 23

1 SDI-I ;i i SDL-RT standard V1.2

e <nunber of ticks to wait for>
Hangs on the semaphore the specified number of ticksif not available.
and <st at us> IS
+ K
If the semaphore has been successfully taken
+ ERROR
If the semaphore was not found or if the take attempt timed out.

4.11 - Semaphoregive

<semaphor e nanme>

Semaphore give symbol

To give a semaphore, the syntax in the * semaphore give SDL-RT graphical symbol’ is:
<senmaphore nane>

4.12 - Timer start

<timer nanme>
(<time out val ue
in tick counts>)

Timer start symbol

To start atimer the syntax in the ‘start timer SDL-RT graphical symbol’ is:
<timer name>(<time value in tick counts>)
<tinme value in tick counts>isusualy an‘int’ butis RTOS and target dependant.

4.13 - Timer stop

<ti mer nane>

Timer stop symbol

To cancel atimer the syntax in the ‘ cancel timer SDL-RT graphical symbol’ is:
<ti mer name>

Page 24 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

4.14 - Task creation

<process nane>
[: <process cl ass>]
[PRIO <priority>]

Task creation symbol

To create a process the syntax in the create process symbol is.
<process nane>[:<process class>] [PRIO <priority>]
to create one instance of <process cl ass> named <pr ocess nane> with priority <pri ority>.

Examples:

anot her Pr ocess:

Process
myProcess aCl assOf Process m

PRI O 80

4.15 - Procedure call

[<return variable> =]
<pr ocedur e nane>
({<paraneters>}*);

Procedure call symbol

The procedure call symbol isused to call an SDL-RT procedure (Cf. “ Procedure declaration” on
page 33). Sinceit is possibleto call any C function in an SDL-RT action symbol it isimportant to
note SDL-RT procedures are different because they know the calling process context, e.g. SDL-
RT keywords such as SENDER, OFFSPRING, PARENT are the ones of the calling process.

The syntax in the procedure call SDL graphical symbol is the standard C syntax:

[<return variable> =] <procedure name>({<paraneters>}*);

Examples:

nyResult =
myPr ocedur e anot her Procedure();
(myPar aneter);

Specification & Description Language - Real Time Page 25

1 SDI-I ;i i SDL-RT standard V1.2

4.16 - Connectors

<connect or nane> <connect or nane>

Connector out Connector in

Connectors are used to:

» gplit atransition into severa pieces so that the diagram stays legible and printable,

* to gather different branches to a same point.
A connector-out symbol has a name that relates to a connector-in. The flow of execution goes
from the connector out to the connector in symbol.

A connector contains a name that has to be unique in the process. The syntax is:
<connector nane>

Examples:
printf("Hello "); | y myLabel
s/

| p |
| v |
| 4 |
| s/

nyLabel v g V

printf("world '\'n");

4.17 - Transition option

Transition options are similar to C #i f def .

Transition option symbol

The branches of the symbol have valuest r ue or f al se. Thet r ue branch is defined when the
expression is defined so the equivalent C code is:

Page 26 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

#i f def <expression>
The branches can stay separated to the end of the transition or they can meet again and close the
option aswould do an #endi f .

Examples:

DEBUG
true false
a = 2; a = 2;
b = 3; b = 3;
myLogFuncti on(a, b);
EXTEND
true false
a = 2; a = 4;
b = 3; b = 4;
c =4 c = 10;
idle mai nt enance

4.18 - Comment

The comment symbol allows to write any type of informal text and connect it to the desired sym-
bol. If needed the comment symbol can be left unconnected.

Specification & Description Language - Real Time Page 27

1 SDI-I ;i i SDL-RT standard V1.2

| Free text to
——{conment a con-
| nected synbol .

Comment symbol

Example:

(idle
negl i ndi cates

msgl the systemis
ready.

4.19 - Extension

The extension symbol is used to complete an expression in asymbol. The expression in the exten-
sion symbol is considered part of the expression in the connected symbol. Therefore the syntax is
the one of the connected symbol.

<connect ed
— synbol
synt ax>

Extension symbol

Page 28 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Example:

(TyDat aLengt i,
ConReq :VODEL‘\"‘/)
MESSAGE_TO HDLC

isequivalent to:

IConReq

(nmyDat aLengt h, nyDat a)
TO_ENV

IMESSAGE_TO HDLC

4.20 - Procedure start

This symbol is specific to a procedure diagram. It indicates the procedure entry point.

D

Procedure start symbol

There is no syntax associated with this symbol.

4.21 - Procedurereturn

This symbol is specific to a procedure diagram. It indicates the end of the procedure.

@ [<return val ue>]

Procedure return symbol

This symbol is specific to a procedure diagram. It indicates the end of the procedure. If the proce-
dure has areturn value it should be placed by the symbol.

4.22 - Text symbol
This symbol is used to declare C types variables.

Specification & Description Language - Real Time Page 29

NTIRT,

SDL-RT standard V1.2

The syntax is C language syntax.

<any C | anguage instructions >

4.23 - Additional heading symbol
This symbol isused to declare SDL-RT specific headings.

Additional heading symbol

It has a specific syntax depending in which diagram it is used.

4.24 - Symbolsordering

The following table shows which symbols can be connected to a specific symbol.

The symbol in
this column can
be followed by
the ticked sym-
bolsin its row.

save

Start

= ||State
x||Stop

 |[input
=|loutput

. [lcontinuous signal

x<|[action

x<|/decision

x<||semaphore take
% ||semaphore give
x<|[timer start

. |[timer stop
=|[task creation
x|[procedure call
=||connector out
x|[transition option
. |[procedure start

. [|procedure return

x||connector in

State

x

x

x

stop

input

output

x| X

X | X

x| X

X | X

X | X

X | X
x| X
x| X
X | X
X | X
X | X
X | X
x| X
X | X
X | X

save

continuous

action

semaphore take

semaphore give

timer start

timer stop

X| X | X| X| X| X

X| X[X| X[X| X

X| X | X| X[X| X

X| X | X| X[X| X

X| X| X| X[X| X

X| X| X| X[X| X
X| X| X| X[X| X
X| X | X| X[X| X
X| X| X| X[X| X
X| X| X| X[X| X
X| X| X| X[X| X
X| X| X| X[X| X
X| X| X| X[X| X
X| X| X| X[X| X
X| X| X| X[X| X

Page 30

Specification & Description Language - Real Time

SDL-RT standard V1.2

%

The symbol in
this column can
be followed by
the ticked sym-
bolsin itsrow.

save

« [[input

. |[continuous signal

. |[procedure start

task creation

procedure call

=< | x<||state
x| x|[Stop

x| x|loutput

x| x action

< | x|/decision

%< | =||semaphore take
= | x||semaphore give
< | x|ftimer start
x| x|[timer stop

x| x/|[task creation
%< | =|[procedure call

=< | x|/connector in
=< | =|lconnector out

% | =|[transition option

= | x|[procedure return

connector out

connector in

transition option

X| X| X

X | X[X

X| X| X

procedure start

X| X| X

X| X| X

X | X| X

X | X| X

X| X| X

X| X| X

X| X| X

X | X| X

X
X

X| X| X

X | X| X

procedure return

The table above should be read row by row. The symbol in the left column can be followed by the
ticked symbols onits row. For exampl e the stop symbol can not be followed by any other symbol.
The state symbol can be followed by input, save, or continuous signal symbols.

Specification & Description Language - Real Time

Page 31

1 SDI-I ;i i SDL-RT standard V1.2

5 - Declarations

5.1 - Process
A processisimplicitly declared in the architecture of the system (Cf. “ Architecture” on page 8)
since the communication channels need to be connected.

aProcess

Process symbol

A process has an initial number of instances at startup and a maximum number of instances. A
process can also be an instance of a process class (Cf. “ Object orientation” on page 58), in that
case the name of the class follows the name of the instance after a colon.

The general syntax is:

<process instance nane>[:<process class>][(<initial nunmber of instances>, <nmaxinmum
nunber of instances>)]

When a process is an instance of a process class the gates of the process class need to be con-
nected in the architecture diagram. The names of the gates appear in the process symbol with a
black circle representing the connection point.

<process nane>:
<process cl ass nane>

<gate nane

Process class instance

The messages defined in the package going through the gates must be consistent with the mes-
sages listed in the architecture diagram where the process instance is defined.

Page 32 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Example:

‘ myPr ocess |
si g3]
[sig2]

gate2
aProcess: aProcessd ass
upper Level Channel |-g p @Uatel
[sigQutl] [siglnl]

5.2 - Procedure declar ation

An SDL-RT procedure can be defined in any diagram: system, block, or process. It is usually not
connected to the architecture but since it can output messages a channel can be connected to it for
informational purpose.

<return type>

<function name>
({<paraneter type>
<parameter nane>}*);

Procedure declaration symbol

The declaration syntax is the same as a C function. A procedure definition can be done graphi-
cally with SDL-RT or textualy in astandard C file.

5.2.1 SDL-RT defined procedure

If defined with SDL-RT the calling process context isimplicitly given to the procedure. Soif a
message output is done, the message will be output from the process calling the procedure. That is
why the message should be defined in one of the channels connected to the process instead of a
channel connected to a procedure. To call such a procedure the procedure call symbol should be
used.

Specification & Description Language - Real Time Page 33

1 SDI-I ;i i SDL-RT standard V1.2

5.2.2 C defined procedure
If defined in C language the process context is not present. To call such a procedure a standard C
statement should be used in a action symbol.

Example:
int
cal cul at eCRC | aProcess
(int datalLength,
char *pData);
[s1g3]
[sig2]
bProcess
upper Level Channel <=
[sigQutl] [siglnl]
5.3 - M essages

Messages are declared at any architecture level in the additional heading symbol. A message dec-
laration may include the parameter typein C. The syntax is.

MESSAGE <nmessage nane> [(<paraneter type>)] {, <nessage nane> [(<paraneter
type>)]};

It isalso possible to declare message lists to make the architecture view more synthetic. Such a
declaration can be made at any architecture level in the additional heading symbol. The syntax is:
MESSAGE LI ST <message |ist nane> = <nmessage nanme> {, <nessage nane>}*;

A message list can contain a message list, the included message list name is surrounded by paren-
thesis.

Page 34 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

MESSAGE \
msgl(nyStruct *), \
msg2(voi d), \
msg3(void *), |

msg4(int *), |

|
|
|
|
|

|
|
|
| nsgs;
|

IVESSAGE LI ST

| nyMessagelist = nsgl, nsg2;

IVESSAGE_LI ST

| anot her MessagelLi st = (nyMessagelist), nsg3;

54-Timers
There is no need to declare timers. They are self declared when used in a diagram.

5.5 - Semaphores

Semaphores can be declared at any architecture level. Since each RTOS has its own type of sema-
phores with specific optionsthere will be no detailed description of the syntax. The general syntax
in the declaration symbol is:

<senmaphore type>
<semaphore name>({<list of options>[,]}*);

Semaphore declaration

It isimportant to note the semaphore isidentified by its name.

Specification & Description Language - Real Time Page 35

1 SDI-I ;i i SDL-RT standard V1.2

6-MSC

SDL-RT integrates the Message Sequence Chart dynamic view. On such a diagram, time flows
from top to bottom. Lifelines represent SDL-RT agents or semaphores and key SDL-RT events
are represented. The diagram put up front the sequence in which the events occur.

In the case of embedded C++ it is possible to use a lifeline to represent an object. In that case the
typeisobj ect and the name should be <obj ect nane>: <cl ass nane>

6.1 - Agent instance

An agent instance starts with an agent instance head followed by an instance axis and ends with
an instance tail or an instance stop as shown in the diagrams bel ow.

[<type>] [<type>]
<name> <name>

]

Lifeline with an instance Lifeline with an instance
tail symbol stop symbol

The type of the agent can be specified on top of the head symbol and the name of the agent iswrit-
ten in the instance head symbol. Theinstance tail symbol means the agent lives after the diagram.
The instance stop symbol means the agent no longer exist after the symbol.

When an agent creates another agent a dashed arrow goes from the parent agent to the child agent.

Page 36 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Example:

process

pParent
process
___________________ > pO_TTsprl ng

]]

Process pParent creates process pOffspring

6.2 - Semaphore representation

A semaphore representation is made of a semaphore head, alifeline, and a semaphore end or tail.
The symbols are the same as for a process except for the head of the semaphore.

[semaphor e] [semaphor €]

ﬂ <nane> ﬂ <nane>

Semaphore with an Semaphore with an
instance tail symbol instance stop symbol

6.3 - Semaphore manipulations

Several cases are to be considered with semaphore manipulations. A process makes an attempt to
take a semaphore, its attempt can be successful or unsuccessful, if successful the semaphore
might still be available (counting semaphore) or become unavailable. During the time the sema-
phore is unavailable, itslifeline gets thicker until it is released.

Specification & Description Language - Real Time Page 37

NTIRT,

SDL-RT standard V1.2

The manipulation symbols are the following:

<sem nane>

Semaphore creation from aknown
process.

take »{

Semaphore take attempt.

Semaphore take successfull but
semaphore is still available.

timed out

Semaphore take timed out.

give

Semaphore give. The semaphore
was available before the give.

Semaphore iskilled by aknown
process.

ﬂ <sem nanme>

Semaphore creation from an
unknown process.

take

Semaphore take attempt on a
locked semaphore.

Semaphore take successfull and the
semaphore is not available any
more.

Semaphore continues.

give

Semaphore give. The semaphore
was unavailable before the give.

X

Semaphore iskilled by an
unknown process.

Page 38

Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Example:
myProcl nmyProc2
——————————————— >ﬂ mySem
take
succeeded
4_ ______________________
take
-
give
>J_ succeeded
__________________ _>
give
-
4. _________________

ProcessnyPr oc1 first creates semaphore ny Sem then takesit successfully.
Process nyPr oc2 makes an attempt to take semaphore ny Sembut gets

blocked on it. Process myPr oc1 releases the semaphore so nyPr oc2 suc-

cessfully gets the semaphore. Process nyPr oc2 givesit back, and killsiit.

6.4 - M essage exchange

A message symbol isasimple arrow with its name and optional parameters next to it. The arrow
can be horizontal meaning the message arrived instantly to the receiver or the arrow can go down
to show the message arrived after a certain time or after another event. A message can not go up !
When the sender and the receiver are represented on the diagram the arrow is connected to their
instances. If the sender ismissing it is replaced by awhite circle, if the receiver ismissing itis
replaced by ablack circle.The name of the sender or the receiver can optionally be written next to
thecircle.

Specification & Description Language - Real Time Page 39

1 SDI- SDL-RT standard V1.2

process block

sender receiver
run

keypad (™Y g i nitMsg

(12,"Hell o worl d\n")

r eadyMsg

start Msg

run

4* engi ne
]]

An external agent called keypad sendsr un message to process sender .
Processsender sendsi ni t Msg that is considered to be received immedi-
atly toblock r ecei ver. Block r ecei ver repliesr eadyMsg, processsender
sendsst art Msg, and block r ecei ver sendsr un to an external agent.

A message is considered received by an agent when it is read from the agent’s message queue; not
when it arrives in the message queue !

Page 40 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

msgl

msgl is sent from instance ato

instance b
msgl msgl I
msgl isreceived from an unknown msgl is sent to an unknown
sender receiver

msgl

msgl
—>

[/ _s

msglissaved and is still in the
save queue

———

saved msgl is now consumed

6.5 - Synchronous calls

This representation is used when using embedded C++ to show method calls on an object. Object
can be represented by lifelines. Synchronous calls are shown with an arrow to the instance repre-
senting the object. While the object has the focus its lifeline becomes a black rectangle and the
agent lifeline becomes a white rectangle. That means the execution flow has been transferred to
the object. When the method returns a dashed arrow return to the method caller.

Specification & Description Language - Real Time Page 41

1 SDI-I ;i i SDL-RT standard V1.2

process object
key board ’ myPhoneBook:PhoneBook
set _URL

("http://ww. sdl-rt.org")

r——- === =1

Processkeyboar d calls method set _URL from myPhoneBook object that is
an instance of PhoneBook class.

6.6 - Sate

A lifeline represents a process and depending on itsinternal state a process reacts differently to
the same message. It isinteresting to represent a process state on its lifeline. It is also interesting
to represent aglobal state for information. In that case the state symbol covers the concerned
instances. In both cases the same symbol is used.

Sate symbol

Page 42 Specification & Description Language - Real Time

SDL-RT standard V1.2

Example:

process

caller

gt

process
idle
conRe
g -
conConf

< connect ed >
L]

< connect ed >
L]

Processserver goestoi dl e state. Processcal | er inits start transition
sendsaconReq to server and goesto statei dl e. Processser ver returns
an conConf message and goesto connect ed state. When conConf message
isreceived by processcal | er it aso movesto connect ed state.

Specification & Description Language - Real Time

Page 43

1 SDI- SDL-RT standard V1.2

6.7 -Timers

Two symbols are available for each timer action depending if the beginning and the end of the
timer are connected or not. The timer name is by the cross and timeout value is optional. When
specified the timeout value unit is not specified; it is usually RTOS tick counts.

<timer nanme> <timer name> <timer name>
[(<timer time>)] [(<tinmer tine>)] [(<timer time>)]

)

Timer start connected Timer stop unconnected Timeout unconnected

<ti mer name> <tinmer nane> <ti mer nanme>
[(<timer tinme>)] [(<tinmer tinme>)] [(<tinmer tine>)]

Timer start unconnected Timer stop connected Timeout connected

\

<timer name>
[(<timer tinme>)]

.

Timer restart connected

Page 44 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDL

Examples:
process process
caller server
idle
conRe
g |
t ConReq
% (100)
< idle >
< conConf
%< t ConReq
< connect ed > < connect ed >

]]

Processcal | er triesto initiate connection with conReq message. At the
sametimeit startstimer t ConReq S0 that if no answer isreceived it will
retry connecting. If an answer isreceived the timer is cancelled and process
cal | er goesto state connect ed.

Specification & Description Language - Real Time Page 45

1 SDI-I ;i i SDL-RT standard V1.2

process process
[l |
idle
conRe
g '

t ConReq
(100)
< connecting
conReq >
t ConReq

(100)

< connecting

INLRRREA

E— E—

Processcal | er triesto initiate connection with conReq message. Since it
receives no answer after two tries it gives up and goes to unconnected state.

6.8 - Timeinterval
To specify atime interval between two events the following symbol is used.

<tinme constraint>

Time constraint syntax is the following:
» absolute timeis expressed with an @ up front the time value,

Page 46 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

» relativetimeis expressed with nothing up front its value,

» timeinterval isexpressed between square brackets,

» timeunit is RTOS specific -usually tick counts- unless specified (s, ms, ps).
Noteit is possible to use time constraint on asingle MSC reference.

Absolute time can also be specified with the following symbol:

<absolute tine value>_ . -

Examples:
Table 1. Examples of time constraint expressions
Expression Meaning
1. 3ms takes 1.3 msto do
[1,3] takes a minimum of 1 to amaximum of 3 time units

@12. 4s, 14. 7s] | should not occur before absolute time 12.4 s and should not finish after
absolutetime 14.7 s.

<5 takes lessthan 5 time units
process @4S process
[dien | - -
o idle
A kR
wor kReq >
[0, OX02FF]

g

wor kResp

Processser ver reaches statei dl e at absolute time 34 Sec.

Processcl i ent request process server to compute some work in less than
O0x02FF time units.

Specification & Description Language - Real Time Page 47

1 SDI-I ;i i SDL-RT standard V1.2

process process

caler server

[0, 200nE] % _____ C Connect i ng >

]

Connect i ng MSC should take |ess than 200mS.

6.9 - Coregion

Coregion is used whenever the sequence of events does not matter. Eventsin a coregion can hap-
pen in any order. The coregion symbol replaces the lifeline instance.

_
|
|
|
|
|
|
|

JR—

Coregion symbol

Example:

process

controller

st opEngi ne -

di splaylnfo -

Processcontrol | er
sends st opEngi ne and di spl ayl nfo or
sends di spl ayl nf o and st opEngi ne.

Page 48 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

6.10 - M SC reference
MSC reference allows to refer to another MSC. The resulting MSC is smaller and more legible.

C <MSC nane> >

M SC reference symbol

A reference concerns the connected instances. An instance is connected if itslifeline disappearsin
the symbol. An instance is not connected if it goes over the reference symbol.

Specification & Description Language - Real Time Page 49

1 SDI- SDL-RT standard V1.2

Example:
process process
[l]
idle
conRe
g -
t ConReq
% (100)
< idle >
< conConf
%< t ConReq
< connect ed > < connect ed >

]]

Connecting MSC

process process

< Connecti ng >

sendDat a

sendDat a

-

]]

Dat aTr ansfer MSC

TheDat aTr ansf er MSC startswith areferenceto Connect i ng MSC. That
means the scenario described in Connect i ng MSC is to be done before the
rest of the Dat aTr ansf er MSC occur.

Page 50 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

6.11 - Text symbol
The text symbol contains data or variable declarations if needed in the MSC.

<any C | anguage decl arati ons>

Text symbol

6.12 - Comment

Asits name states...

| Free text to
——{coment a con-
|nected synbol .

Comment symbol

6.13 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Examples:

¥~ Say hi to your friend */
printf("Hello world !'\n");

for (i=0;i<MAX;i++)

{

newString[i] = oldString[i];

Specification & Description Language - Real Time Page 51

1 SDI-I ;i i SDL-RT standard V1.2

unsi gned char *full Data, *dat a;
int | engt h; |

process process

caller server

< Connecti ng >

sendDat a

(Tength, dat a) >
F—— = — — _
et py(| full Dat a
ful | Dat a, poi nter points
dat a, at the end of
l engt h); | buffer.
Lo _

]]

Dat aTr ansfer MSC

The action symbol contains standard C instructions related to data declarations.

6.14 - High-level MSC (HM SC)

High level MSC diagram is a synthetic view of how MSCsrelate to each other. It isonly afew
symbols: start, stop, alternative, parallel, state or condition, and M SC reference.

VA w

Pardlel Alternative
MSC reference State or condition

Page 52 Specification & Description Language - Real Time

SDL-RT standard V1.2

NTIRT,

The SDL-RT HM SC starts with the start symbol and ends with the stop symbol. The parallel sym-
bol means the following connected path will be executed in parallel. The Alternative symbol
means one and only one of the connected path is executed. Whenever two paths meet again the
path separator symbol isto be repeated. That meansif a parallel symbol is used that creates two
different paths, the parallel symbol should be used when the path merge back.

Symbols are connected with lines or arrows if clearer. A symbol is entered by its upper level edge

and leaved by any other edge.

Example:

di sconnect ed

(conFail ed) < conSucceeded >

(
D

(supervising) < dat aTr

ansf er >

0
D

< di sconnect >

The system startsin di sconnect ed state. Connection attempts are made,
either the conFai | ed scenario or the conSucceeded scenario is executed. If
conSucceeded isexecuted super vi si ng and dat aTr ansf er are executing
in parallel. They merge back to di sconnect and end the HMSC scenario.

Specification & Description Language - Real Time

Page 53

1 SDI-I ;i i SDL-RT standard V1.2

7 - Datatypes

The data types, the syntax and semantic are the ones of ANSI C language. Thereisno SDL-RT
predefined data types at all but just some keywords that should not be used in the C code. Consid-
ering the SDL-RT architecture and concepts surrounding the C code some important aspects need
to be described.

7.1 - Typedefinitions and headers
Types are declared in the text symbol:

<Any C type declaration >

Types declared in an agent are only visible in the architecture below the agent.

7.2 - Variables

Variables are declared after the type definitions in the same text symbol.

<Any C type definition >
<Any C gl obal variable definition >

Variables declared in an agent are only visible in the architecture below the agent. For example
global variables are to be declared at system level. A variable declared in ablock level isnot seen
by an upper level block. Variables declared in an SDL-RT processin atext symbol arelocal to the
process. They can not be seen or manipulated by any other process.

7.3 - C functions

SDL-RT internal C functions are to be defined through the SDL-RT procedure symbol. An SDL-
RT procedure can be defined graphically in SDL-RT or textually in C. When defined in C the pro-
cedure call symbol should not be used. A standard C statement in an action symbol should be
used.

7.4 - External functions

External C functions can be called from the SDL-RT system. These should be prototyped in the
system or in an externa C header. Itisup to an SDL-RT tool to gather the right files when compil-
ing and linking.

Page 54 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

8 - Memory management

Real time systems need to exchange information. The best way to do so isto have areserved
chunk of shared memory that several tasks can access. SDL-RT implicitly runs on such an under-
lying architecture since it supports global variables and exchanges message parameters through
pointers. That raises memory management rules to follow to ensure a proper design.

8.1 - Global variables

SDL-RT processes can share global variables. Thisisvery powerful but also very dangerous since
the data can be corrupted if manipulated without caution. It is strongly recommended to use sema-
phores to access global variables to be sure data is consistent. An example of such adesignis
given later in this document.

8.2 - Message par ameters

Parameters of a message are passed through a pointer. Thisimplies the data pointed by the send-
ing process will be accessible by the receiving process. Therefore a good design should meet the
following rules:
» Sending processes allocate specific memory areas to store parameters,
* Oncethe message is sent the parameter memory area should never be manipulated again
by the sending process,
» Receiver processes are responsible for freeing memory containing message parameters.

Specification & Description Language - Real Time Page 55

1 SDI-I ;i i SDL-RT standard V1.2

9 - Syntax

All SDL-RT names must be a combination of alphabetical characters, numerical characters, and
underscores. No other symbols are allowed.

Examples:

nmyPr ocessNanme
my_procedure_nane
bl ock_1

_senmaphor eNane

Page 56 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

10 - Semantic

Since some SDL-RT concepts can be reached through their names (processes, semaphores) each
name in the system must be unique. Thiswill make the design more legible and ease the support
of SDL-RT in atool.
It is suggested to use the following convention for names:

* block names should start with'b’,

» process names should start with 'p’,

* timer names should start with 't

» semaphore names should start with’s’,

» global variables should start with'g'.

Specification & Description Language - Real Time Page 57

1 SDI-I ;i i SDL-RT standard V1.2

11 - Object orientation

11.1 - Package

Object orientation in SDL-RT allows to define classes of processes and blocks. Classes defini-
tions are gathered in an SDL-RT package. To be able to use classes defined in a package, an SDL -
RT system should explicitly import the package with USE keyword in an additional heading sym-
bol at system level.

A package is a separated entity that contains agents or classes of agents. It is referenced by its
name.

[

<package nane>

It can contain:

* blocks,
classes of blocks,
processes,
classes of processes,
procedures,
data definitions.

11.2 - Block class

Defining ablock class allows to use the same block several timesin the SDL-RT system. The
SDL-RT block does not support any other object oriented features. A block class symbol isa
block symbol with adouble frame. It has no channels connected to it.

<bl ock cl ass nane>

A block class can be instantiated in ablock or system. The syntax in the block symbol is:
<bl ock i nstance nane>: <bl ock cl ass nanme>

Page 58 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

Messages come in and go out of a block class through gates. In the block class diagram gates are
represented out of the block class frame. When a block classis instantiated the gates are con-
nected to the surrounding SDL-RT architecture. The messages listed in the gates are to be consis-
tent with the messages listed in the connected channels.

—————————————————

<bl ock instance nane>:
<bl ock cl ass nane>

_._______

<gat e nane>

Specification & Description Language - Real Time Page 59

SDL SDL-RT standard V1.2

Example:
nmyBl ockC ass
Gat e2
4 cEnv2
o= > @< aProcess
[si gQut 2] [sigln2] [si gQut 2] [sigln2]
cl nt ernal
0« nyGat el > @ bProcess
[sigQut1, [siglni] [si gQut 1] [siglni]
si gQut 3]
Definition diagram of myBlockClass block class
mySystem A [messages,
message9)
chEnvB
[message7]
T)
chEnvA 1 blockA:myBlockClass 1 blockB
| I chAB
|- », nmyGat el my Gat e2 ,4 -
[sigQut1l, [siglnl] | | [sigin2] [sigQut 2]
sigout3y T ------7-7"

blockA is an instance of myBlockClass

11.3 - Process class

Defining a process class allows to:
* have several instances of the same process in different places of the SDL-RT architec-
ture,
* inherit from a process super-class,
* gpecializetransitions and states.

Page 60 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

A process class symbol is a process symbol with a double frame. It is has no channels connected
toit.

MyProcess

A process class can be instantiated in ablock or a system. The syntax in the process symbol is:
<process i nstance nanme>: <pr ocess cl ass name>

Messages come in and go out of a process class through gates. In the process class diagram, gates
are represented out of the process class frame. When a process class is instantiated the gates are
connected to the surrounding SDL-RT architecture. The messages listed in the gates are to be con-
sistent with the messages listed in the connected channels. The names of the gates appear in the
process symbol with ablack circle representing the connection point.

F—_——— = = = = = = = = =

<process nane>:
<process cl ass nane>

_———— = = = =

\
|
|
|
|
|
<gate nane>¢@
)

e e e - - — o

Since aclass is not supposed to know the surrounding architecture, message outputs should not
use the TO_NAME concept. Instead TO_ID, VIA, or TO_ENV should be used.

Specification & Description Language - Real Time Page 61

1 SDI-I ;i i SDL-RT standard V1.2

Example:
myPr ocess

[sig3]

[sig2]
;" gate2 T N
(\
| |
: aProcess: aProcessd ass :
| |
upper Level Channel |«a » @Uatel |
[sigQutl] [siglnl] | !
AN /

SDL-RT transitions, gates and data are the elements that can be redefined when specializing. In
the sub class the super class to inherit from is defined with the | NHERI TS keyword in an addi-
tional heading symbol. There are several ways to specialize a process class depending on what is
defined in the super class.

Page 62 Specification & Description Language - Real Time

SDL-RT standard V1.2

1

SIIRT

» If the element is new in the sub class, it is ssmply added to the super class definition,

-
I
L

nsg3
et e
[msg3]
MySuperClass
stabl e
1
nsg3 <msgl <
nyGat el ‘ ‘
o————»0

[msg3]

(o) o

An instance of MyClass

Specification & Description Language - Real Time

Page 63

1 SDI-I ;i i SDL-RT standard V1.2

 If the element existsin the super class, the new element definition overwrites the one of

the super class,
[E D T M ™
Int nyVar; T I NHERI TS MySuper d ass;
L - - - - — — — |
msg3 msg3
nmyVar = 2; nmyVar = 3;
myGat el
o——»0 unst abl e
[msg3]
MySuperClass MyClass

i nt nyVar; W

nmsg3

myVar = 3;

nyGat el
’—>[. ® unst abl e
nsg

An instance of MyClass

» A classcan be defined as abstract with the ABSTRACT keyword. It means the class can not
be instantiated asis; it needsto be specialized. A class can define abstract transitions or

Page 64 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

abstract gates. It means the abstract transition or gate exists but that it is not defined.
Such aclassis obviously abstract and needs to be defined as such.

| NHERI TS MyAbst ract Super Ol ass;)
Lo J
stabl e (stabl e)
ABSTRACT nsg3
nsg3
nyGat el
o——»0 unst abl e
[msg3]
MyA bstractSuperClass MyClass

nyGat el
o—————»0 unst abl e
[msg3]

An instance of MyClass

Specification & Description Language - Real Time Page 65

SDL SDL-RT standard V1.2

Here comes an example mixing all object oriented concepts and the resulting object:

i nt nyVar; T
stabl e
msgo < msg3 < ABSTRACT
VI RTUAL msg2
oe MGie2 Lo \ \
myVar = 5; myVar = 2;
myGat el
.—>‘ mai I'lt
[msg3]
MyA bstractSuperClass

char nyQt her Var ; T

stabl e
nsg3 nsg2 < nmsgl <

Z g msg4
myGat e2 myVar = 3; myQt her Var = I A nyGat e2
[msg4] [msg2,
nsgl]
unst abI e ‘ stabl e

MyClass

Page 66 Specification & Description Language - Real Time

SDL-RT standard V1.2

SDL

int nyVar;

char myQt her Var;

st abl e

nyGat el o nsg5 neg3 neg2 nmegl <
o>
e | | | |
nmyVar = 5; my Var 3; myCtherVar = 'a’; glsgty&te}

my Gat e2 ‘

[msg4] [m8g2,

= (=) (=) (o) ()

An instance of MyClass

Specification & Description Language - Real Time

Page 67

NTIRT,

SDL-RT standard V1.2

12 - Symbols contained in diagrams

The table below shows what symbols can be contained in a specific diagram type.

5 |5
w® & = 0
g | =)
In the diagrams listed g |3 8 5 =
in this column the éﬁ ° o |2 = s o |&
ticked symbols on the % S |3 2 § 2 o |S 5 |8 |5
right can be used. T8k |8 |8 |8 % Z |_ o o [B
BcecielelgIlERIEIR IEIB
8 8 |a&a & |a |&a c 8 |18 |& |& |8
package X | X[X | X[X | X[X[X|X]|X|X]|-]-
block class -l - - XXX XX | X | X]| X]|X]|-
process class -l -l - - - - XXX] -] X
block -l - - XX XXX X | X]|-|X]|-
process - - - - -] -] -] -] X]|X]- X
procedure S R T R T R R R R B G T I ¢

A diagram listed in the first column can contain the ticked symbolsin the other columns. For
example the process symbol can contain the additional heading symbol, the text symbol and all
the behavior symbols. The behavior symbols are al symbols described in “Behavior” on page 13.

Page 68

Specification & Description Language - Real Time

SDL-RT standard V1.2 SDL

13 - Textual representation

Storage format follows XML (eXtensible Markup Language standard from W3C available at
http://www.w3c.org) standard with the following DTD (Document Type Definition):

<l-- Entity for bool eans -->
<l-- -->

<IENTITY % bool ean " (TRUE| FALSE) ">

<l-- Entities for synbol types -->
<l-- -->

<IENTITY % sdl Synbol Types1

"sdl SysDgnFrn sdl SysTypeDgnfr mj sdl Bl kDgnir nj sdl Bl kTypeDgnFr nf sdl Bl kType| sdl Bl k| sdl Bl kT
ypel nst | sdl PrcsType| sdl Prcs| sdl PrcsTypel nst" >

<IENTI TY % sdl Synbol Types?2

"sdl I nherits| sdl PrcsTypeDgntrn sdl PrcsDgnfr i sdl PrcdDgnfr i sdl St art | sdl St at e sdl | nput S
i g| sdl SendSi g| sdl SaveSi g| sdl Cont Si g" >

<IENTITY % sdl Synbol Types3

"sdl Task| sdl Deci si on| sdl TransOpt | sdl Joi n| sdl Text | sdl Comrent | sdl Text Ext | sdl Cnct r Qut | sdl
Cnctrln|sdl PrcsCreation| sdl Stop">

<I ENTI TY % sdl Synbol Types4

"sdl I ni t Ti mer | sdl Reset Ti mer | sdl SenDecl | sdl SenTake| sdl SenG ve| sdl PrcdPr ot o] sdl PrcdDecl |
sdl PrcdCal | | sdl PrcdSt art | sdl PrcdRet urn">

<IENTITY % nmscSynbol Types

"mscExt ernal Frnj mscl nl i neExpr | nscLi f el i ne| necSenaphor e| mscLost Msg| nscFoundMsg| nscCome
nt | necGenNanmeAr ea| nscText | nscAbsTi meConst r | nscCondi ti on| mscMscRef | mscl nl i neExpr Zone" >

<IENTITY % hnscSynbol Types

"hnmscDgnfr i hnscPar al | el | hnmscSt art | hnscEnd| hnscCondi ti on| hnscMscRef | hnscAl t er nat i vePoi
nt">

<IENTI TY % nmscdocSynbol Types "nscdocDgn¥r n| nscdocMscRef | nscdocHeader " >

<IENTITY % Synbol Type

"(9%sdl Synbol Typesl; | %sdl Synmbol Types2; | %sdl Synbol Types3; | ¥%sdl Synbol Types4; | %rscSynbol Ty
pes; | “hnscSynbol Types; | “scdocSynbol Types;)" >

<!-- Entity for lifeline conponent type -->
<l-- -->

<IENTITY % Li f el i neConponent Type "(nornjsusp| neth|coreg|act)">

<l-- Entity for tinme interval type -->
<l-- ->

<IENTITY % Ti nel nterval Type "(start|end|timeout|constraint)">

<!-- Entity for connector types -->
<l-- -->

<IENTI TY % Connect or Type
"(void| chnl | chnl gat e| sdl arr ow| nscvoi d| nscgat e| nscar r owgat e| hnscar r ow) " >

Specification & Description Language - Real Time Page 69

http://www.w3c.org
http://www.w3c.org
http://www.w3c.org

SDL SDL-RT standard V1.2

<I-- Entity for side for connectors -->
<l-- -->

<IENTITY % Side "(n|s|wWe|x|y)">

<I-- Entity for end types for connectors -->
<l-- -->

<IENTITY % Connect or EndType " (voi dend| arrow m darrow)">

<I-- Entity for link segnent orientation -->
<l-- -->

<IENTITY % Orientation "(h|v)">

<l-- Entity for link types -->
<l-- -->

<IENTITY % Li nkType "(sbvoi d| dbvoi d| ssvoi d| dsvoi d| chnl | dec|transopt|nsg|rtn|instcre)">

<l-- Entity for diagramtypes -->
<l-- -->

<IENTITY % Di agr anilype
"(sys| systype| bl k| bl kt ype| prcs| prcstype| prcd| msc| hnsc| nscdoc| cl ass| usec| act | st at e|] conp
| seq| col | | depl)" >

<l-- Element for text in synbols/links/... -->
<l-- —_

<! ELEMENT Text (#PCDATA) >
<! ATTLI ST Text

id CDATA "0"
>
<l-- Elenment for lifeline synbol conponents (MSC specific) -->
<! - - —————————=== - - >
<l-- The "Text" conponent and "wi dth" attribute are only for action synbols -->

<! ELEMENT Li f el i neConponent (Text?)>
<! ATTLI ST Li f el i neConponent
type %.i f el i neConponent Type; #REQUI RED

hei ght CDATA #REQUI RED

col or CDATA " #000000"

wi dt h CDATA R A
>
<l-- Elenment for lifeline synbol tine intervals (MSC specific) -->
<| == oo - - >

Page 70 Specification & Description Language - Real Time

SDL-RT standard V1.2 SDL

<! ELEMENT Ti nel nterval (Text)>
<I ATTLI ST Ti el nt erval

type o9Ti mel nt erval Type; #REQUI RED

startpos CDATA #REQUI RED

endpos CDATA N

of f set CDATA #REQUI RED

col or CDATA " #000000"
>
<l-- Element for spanned lifelines for spanning symbols (MSC specific) -->
<! - - s

<! ELEMENT SpannedLi feline EMPTY>
<! ATTLI ST SpannedLifeline
lifelineld IDREF #REQU RED

>
<I-- Elenment for inline expression zones (MSC specific) -->
<l-- —==—=—====== - ->

<! ELEMENT Zone EMPTY>
<! ATTLI ST Zone
zoneSynbol Id | DREF #REQUI RED

>

<!-- Element for synbols -->

<l-- -

<l-- The "LifelineConponent"” and "Ti nmelnterval" conponents and the "dies" attribute are
only for lifelines synbols -->

<l-- The "Zone" conponent is only for inline expression synbols -->

<!-- The "SpannedLifeline" conponent is only for spanning synbols in MSC di agranms -->

<! ELEMENT Synbol (Text, (((LifelineConponent*), (Tinelnterval*)) | ((SpannedLifeline*),

(Zone*)) | (Symbol *)))>
<! ATTLI ST Synbol

synbol I d I D #REQUI RED
type ¥synbol Type; #REQUI RED
xCent er CDATA #REQUI RED
yCent er CDATA #REQUI RED
fi xedDi nensi ons %bool ean; " FALSE"
wi dt h CDATA "10"
hei ght CDATA "10"
di es %bool ean; " FALSE"
col or CDATA "#000000"
>
<!-- Elenent for connectors -->
<l-- -->
<! ELEMENT Connector (Text, Text)>
<! ATTLI ST Connect or
attachedSynbol Id | DREF #REQUI RED
type %Connect or Type; #REQUI RED
i sQutsi de %ool ean; #REQUI RED
si de %Si de; #REQUI RED

Specification & Description Language - Real Time Page 71

SDL SDL-RT standard V1.2

position CDATA #REQUI RED
endType % onnect or EndType; #REQUI RED
>
<l-- Element for link segnents -->
<l-- -->
<! ELEMENT Li nkSegnent EMPTY>

<! ATTLI ST Li nkSegnent
orientation % rientation; #REQU RED
I engt h CDATA #REQUI RED
>
<l-- Element for links -->
<l-- -->
<I ELEMENT Link (Text, Connector, Connector, LinkSegnment*)>
<! ATTLI ST Li nk
type %.i nkType; #REQUI RED
t ext Segnment Num CDATA #REQUI RED
col or CDATA " #000000"
>
<!-- Elenent PageSpecification -->
<l-- -->
<I-- Attributes for diagram pages; all dinmensions are centinetres -->
<! ELEMENT PageSpeci ficati on EMPTY>
<! ATTLI ST PageSpeci fication
pageW dt h CDATA "21"
pageHei ght CDATA "29.7"
t opMar gi n CDATA "1.5"
bott omvargi n CDATA "1.5"
leftMargin CDATA "1.5"
ri ght Margin CDATA "1.5"
pageFoot er %bool ean; " TRUE"
>
<l-- Elenment for diagrams -->
<l-- -->

<! ELEMENT Di agram (PageSpeci ficati on?, Synbol, Link*)>

<l-- Warning: the attributes pageWdth & pageHei ght are deprecated; use el ement
PageSpecification instead -->

<I ATTLI ST Di agram

type %i agr anifype; #REQUI RED
pageW dt h CDATA "21"
pageHei ght CDATA "29.7"
nbPagesH CDATA "
nbPagesV CDATA "

cel | Wdt hMm CDATA " 5"

Page 72 Specification & Description Language - Real Time

SDL-RT standard V1.2

SDL

14 - Example systems

14.1 - Ping Pong

-

!

has been introduced.

This example system is a basic send and receive test.
Firsttwo processes pPing and pPong are created.
pPing receives start message from the envirenment
and the game staris. To slow itdown a bita timer

*

=
m
9]
%]
=
]
m
T
3
«
o
=]
3
«
[2]
&
=
T

pFing

[pang]

[ping

pPong

[stari]

Ping pong system view

Specification & Description Language - Real Time

Page 73

SDL SDL-RT standard V1.2

idle

running

idle

start

| ping TO_NAME pPong thait(i()()) | | ping TO_NAME pPong

running running

i

Ping process

Page 74 Specification & Description Language - Real Time

SDL-RT standard V1.2

SDL

idle

ping

| pong TO_NAME pPing

Pong process

Specification & Description Language - Real Time

Page 75

1 SDI- SDL-RT standard V1.2

pPong Erw

idle
< idle >

(’_,/start

ping
< running > \

pong

/ < idle >
F——Ctuait(100)

<, running
t—Ctuait

X ping
< running > \

MSC trace of the ping pong system

Page 76 Specification & Description Language - Real Time

SDL-RT standard V1.2 DL

14.2 - A global variable manipulation

-

This example shows how to handle a global variable.

Both processes fry o modipy & global variable in their start transition.

To do so they first ke the semaphore dedicated to this global variable.
When they are done they give back the semaphore so thatanother
process can access the variable.

In this example we have puttimers in each process so that they keep the
semaphere long encugh to have a conglict while accessing the

global variable.

Note the global variable is defined in an extzrnal C file and resolved at

link time.
*
extern int myGlobalVariable; T
BINARY mySemaphore
(PRIO,INITIAL_FULL)

Global variable manipulation example system

Specification & Description Language - Real Time Page 77

SDL SDL-RT standard V1.2

C)

mySemaphore (FOREYER)

M

myGlobalVWariahle = 5;

myTimer (2000

myTimer

J mySemaphore

Process A

Page 78 Specification & Description Language - Real Time

SDL-RT standard V1.2 SDL

C

j mySemaphore (FOREYER)

myGlobalVWariahle = 10;

% myTimer (2000

myTimer

J mySemaphore

Process B

Specification & Description Language - Real Time Page 79

1 SDI-I ;i i SDL-RT standard V1.2

pProcessA | | pProcessB | | Ere | | mySemaphore

%mgtimer‘
< waiting bl

t.ak
-%mgtimer'
iv
< finished >
%mgtimer‘
< waiting bl

-%mgtimer'

iv

< finished >

MSC trace of the global variable manipulation

Page 80 Specification & Description Language - Real Time

SDL-RT standard V1.2

SIIRT

15 - Keywords

The following keyword have a meaning at in some specific SDL-RT symbols listed below:

keywords concerned symbols
PRI O Task definition
Task creation
Continuous signal
TO_NAMVE M essage output
TO ID
TO_ENV
VIA
FOREVER semaphore manipulation
NO WAI T
>, <, >3, <=, 1=, == decision branches
true, false,
el se

USE
SDL_MESSAGE_LI ST

text symbol

Table 2: Keywordsin symbols

Specification & Description Language - Real Time

Page 81

1 SDI-I ;i i SDL-RT standard V1.2

16 - Differenceswith classical SDL

It isdifficult to list al the differences between SDL-RT and SDL even though an SDL developer
would understand SDL-RT and vice versa. Still to be ableto clearly state the differences between
these languages we will pinpoint the main differences in the paragraphs below.

16.1 - Datatypes

Thisisthe most significant difference between SDL and SDL-RT. Classical SDL hasits own data
types and syntax where SDL-RT basically uses ANSI C language. Some symbols have a specific
syntax with SDL-RT since there is no C equivalent instruction such as output, input, save, or
semaphore manipulations.
The advantages are obvious:

» the syntax isknown by all real time developers,

 itimplicitly introduces the concept of pointers that does not exist in SDL,

* it easesintegration of legacy code whereit is quite tricky to do from classical SDL,

» and last but not least it makes code generation out of SDL-RT quite straightforward.

16.2 - Semaphores

Semaphoreis akey concept in real time systems that classical SDL misses. Specific semaphore
symbols have been introduced in SDL-RT to answer the real time developer needs.

16.3 - Inputs

Classical SDL has nice concepts when it comes to dealing with message exchanges. But these
concepts are not so interesting in real time development and are quite tricky to implement on a
real target or operating system. That iswhy SDL-RT has removed the following concepts:
enabling conditions when receiving a message, internal messages, two levels priority messages.

16.4 - Names

Classical SDL uses exotic names for some well known concepts such as "signal” whereit is basi-
cally related to a"message”. Since "message” is the usual name in Real Time Operating Systems
SDL-RT uses the same term.

When it comes to object orientation classical SDL talks about "type" instead of the usual "class'
term. SDL-RT uses the common developer word "class".

16.5 - Object orientation

Classical SDL uses"virtua", "redefined", and "finalized" when it comes to object oriented con-
cepts. For example a super class should specify atransition is"virtual" so that the sub classis

Page 82 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

allowed "redefine” or "finalize" it. Thisis C++ like but actually quite painful when it comes to
write and does not make things any clearer. SDL-RT takes the Java notation instead wherethereis
no need to specify anything to be able to redefine it in a sub class.

Specification & Description Language - Real Time Page 83

1 SDI-I ;i i SDL-RT standard V1.2

17 - Modifications from previous releases

17.1 - Semaphore manipulation

171.1V10to V11

The semaphore take now returns a status that indicates if the take attempt timed out or was suc-
cessfull. The semaphore lifeline gets grayed when the semaphore is unavailable.

17.2 - Object orientation

17.21V11toV12

There has been an error in the object orientation chapter: it is not possible to declare a process
class or ablock classin ablock class definition diagram.

17.3 - Messages

17.3.1V11toV1z2
* Messages now heeds to be declared.
* Message parameters are now typed with C types.
» Parameter length can be omited if the parameter is structured. Then the length isimplic-
itly the sizeof the parameter type.
* TheVIA concept has been introduced.

17.4-MSC

1741V11toV1z2
» Saved messages representation introduced.

Page 84 Specification & Description Language - Real Time

SDL-RT standard V1.2 1 SDLI ;i i

18 - Lexical rules

A subset of the BNF (Backus-Naur Form) is used in these pages :
<traditional English expression> asit says...

[<stuff>] stuff is optional
{<stuff>}+ stuff is present at |east one or more times
{<stuff>}* stuff is present O or more times

Specification & Description Language - Real Time Page 85

1 SDI-I ;i i SDL-RT standard V1.2

19 - Glossary

ANSI American National Standards Institute

BNF Backus-Naur Form

MSC Message Sequence Chart

RTOS Real Time Operating System

SDL Specification and Description Language

SDL-RT Specification and Description Language - Real Time

Page 86 Specification & Description Language - Real Time

SDL-RT standard V1.2

20 - Index

A

Action

symbol 22
Action symbol

MSC symbol 51
Additional heading symbol 30
Agents8

Block
class 58

C

call

procedure 25
channels 10
Class

block 58

process 60
Comment 27

MSC symbol 51
Connectors 26
Continuoussignal 21
Coregion 48
creation

task 25

D

Datatype

difference with classical SDL 82

Datatypes 54
Decision 22

Declaration
message 34
procedure 33
process 32
semaphore 35
timer 35
variables 29
Diagram
contained symbols 68

E

else
decision 23
keyword 81
Environment
definition 8
message output 18
Extension 28

F

false
decision 23
keyword 81
transition option 26
FOREVER
keyword 81

G

give
semaphore 24

Specification & Description Language - Real Time

Page 87

SDL-RT standard V1.2

if 22

ifdef 26

Input
difference with classical SDL 82
message 15

instance
MSC 36

K

Keywords 81

L

Lexical rules85

M

Memory
management 55
M essage
communication principles 10
declaration 34
input 15
memory management 55
MSC 39
output 16
parameters 55
save 21
MSC 36
action 51
agent instance 36
comment 51

reference 49
semaphore 37
text symbol 51

N

Naming
convention 57
difference with classical SDL 82
syntax 56
NO _WAIT
keyword 81

O

Object

concept 58

difference with classical SDL 82
OFFSPRING

procedure 25
output 16

P

Package 58
PARENT
procedure 25
PRIO
continuous signal 22
keyword 81
Procedure
call 25
declaration 33
return 29
start 29
Process
behavior 13
class 60
declaration 32

Page 88

Specification & Description Language - Real Time

SDL-RT standard V1.2

R

reference
MSC 49
return
procedure 29

S

save 21
SDL_MESSAGE_LIST
keyword 81
SDL-RT
Lexical rules 85
Semaphore
declaration 35
difference with classical SDL 82
give 24
global variable 55
MSC 37
take 23
SENDER
procedure 25
Start
procedure 29
symbol 13
timer 24
State 13
MSC 42
Stop
symbol 14
timer 24
Storage format 69
Symbol
additional heading 30
in diagram 68
ordering 30
text 29
Synchronous calls
MSC 41
System 8

T

take
semaphore 23
Task
creation symbol 25
Text
MSC symbol 51
symbol 29
Timeinterval
MSC 46
Timer
declaration 35
MSC 44
start 24
stop 24
TO_ENV 18
keyword 81
TO_ID 16
keyword 81
TO_NAME 17
keyword 81
Transition option 26
true
decision 23
keyword 81
transition option 26

U

USE
keyword 81

V

VIA 18
keyword 81

Specification & Description Language - Real Time

Page 89

1 SDI-I ;i i SDL-RT standard V1.2

X

XML
data storage 69

Page 90 Specification & Description Language - Real Time

	1 - Introduction
	2 - Architecture
	2.1 - System
	2.2 - Agents

	3 - Communication
	4 - Behavior
	4.1 - Start
	4.2 - State
	4.3 - Stop
	4.4 - Message input
	4.5 - Message output
	4.5.1 To a queue Id
	4.5.2 To a process name
	4.5.3 To the environment
	4.5.4 Via a channel or a gate

	4.6 - Message save
	4.7 - Continuous signal
	4.8 - Action
	4.9 - Decision
	4.10 - Semaphore take
	4.11 - Semaphore give
	4.12 - Timer start
	4.13 - Timer stop
	4.14 - Task creation
	4.15 - Procedure call
	4.16 - Connectors
	4.17 - Transition option
	4.18 - Comment
	4.19 - Extension
	4.20 - Procedure start
	4.21 - Procedure return
	4.22 - Text symbol
	4.23 - Additional heading symbol
	4.24 - Symbols ordering

	5 - Declarations
	5.1 - Process
	5.2 - Procedure declaration
	5.2.1 SDL-RT defined procedure
	5.2.2 C defined procedure

	5.3 - Messages
	5.4 - Timers
	5.5 - Semaphores

	6 - MSC
	6.1 - Agent instance
	6.2 - Semaphore representation
	6.3 - Semaphore manipulations
	6.4 - Message exchange
	6.5 - Synchronous calls
	6.6 - State
	6.7 - Timers
	6.8 - Time interval
	6.9 - Coregion
	6.10 - MSC reference
	6.11 - Text symbol
	6.12 - Comment
	6.13 - Action
	6.14 - High-level MSC (HMSC)

	7 - Data types
	7.1 - Type definitions and headers
	7.2 - Variables
	7.3 - C functions
	7.4 - External functions

	8 - Memory management
	8.1 - Global variables
	8.2 - Message parameters

	9 - Syntax
	10 - Semantic
	11 - Object orientation
	11.1 - Package
	11.2 - Block class
	11.3 - Process class

	12 - Symbols contained in diagrams
	13 - Textual representation
	14 - Example systems
	14.1 - Ping Pong
	14.2 - A global variable manipulation

	15 - Keywords
	16 - Differences with classical SDL
	16.1 - Data types
	16.2 - Semaphores
	16.3 - Inputs
	16.4 - Names
	16.5 - Object orientation

	17 - Modifications from previous releases
	17.1 - Semaphore manipulation
	17.1.1 V1.0 to V1.1

	17.2 - Object orientation
	17.2.1 V1.1 to V1.2

	17.3 - Messages
	17.3.1 V1.1 to V1.2

	17.4 - MSC
	17.4.1 V1.1 to V1.2

	18 - Lexical rules
	19 - Glossary
	20 - Index

