specification & description language - real time

| oviect

Date

Version

Reference

Graphical language to specify
and design real time
and embedded software

February 1st 2002

1.0

http://www.sdl-rt.org

1 SDL SDL-RT Standard V 1.0

Page 2 Specification & Description Language - Real Time

SDL-RT Standard V 1.0 1 SDLI ;i i

Introduction = - = - === cmcmmme e e 7
Architecture--- - - - - - - oo e e 8
Y £S 1 EORP 8
0 < PSSP 8
CoOmMMUNICALION == = - == = - == s o m s o e e oo 10
Behavior ------- - m e oo 13
= 1 TR 13
S - (= S PST TR 13
S 0 o ST SR 14
IMIESSAgE INPUL ...ttt sttt b et b et e e e e e b e bt b e se e e bt e e e e e e et et e nbenbeneennis 15
eSSz o T o0 11 o | PR 15
Queueld 16
Process name 16
Environment 17
eSSz o LR Y SRR 17
CONLINUOUS SIONA ...ttt ettt bbbttt e e et e et be e be bt et e e e e e e e e ene e 18
o (o) o USRS 19
D= ol o] o USRS 19
SEMBPNOTE TAKE ...ttt bbbttt e e e e b e ne e 20
SEMAPNOIE GIVE ..ottt ettt e e e st e e te s st e s aeeteeaeesteeasesseesseensesneesteensesnnensennnans 21
QL1 = SRR 21
LIS 5 (0] o ISP UR USSR 21
BLIE= S 1 (== 1o o TSRS 21
01010 (U1 0= o || S 22
(O0] 0101 oi (0] £ PR 22
IS L0 1) o1 oo SRS 23
(O0 001007 o | PR RURRTR 24
T 1 o o S 25
e LeTor o (U = RSP 25
0100 (U1 L= = U o SRR 26
TEXE SYMDION ...ttt e e bt bbb e s e e e e e e e nn e b nre s 26
Additional heading SYMDOIcoioiiiiececeee e e eas 26
SYMDOIS OFUEITNG ..ttt e e bbbt bt e e e e e e e nnenr e ne e 27
DeclarafionS - - = === - - ccccmmmmc e ien e m e e 28
PrOCESS......oiitiicice e e 28
Procedure deClaration.............cooiuiiiiiiiii e s 29
SDL-RT defined procedure 29
C defined procedure 30
IMTESSATES ...ttt n e et e e n R r e n e 30
11 £ PSSR 30
S =0 0] =PSRN 31
Y SR e e 32
AGENE INSIANCE......eeeit ettt bbbttt e e b b e e e e bt bt sb e e be e s e e e e e e e e nnennenre s 32
SeMAPNOre FEPIESENTALIONc.veeveceeeieeie e se et e et e et e e e sreeteeseesseeseeseesaeeeesneensennnens 33

Specification & Description Language - Real Time Page 3

1 SDLI ;i i SDL-RT Standard V 1.0

Semaphore MaNiPUIBLTONS ..ot b et e e 33
IMESSAZE EXCHANGE.cueeciieitie ettt ettt et e s b e e te e s beeeaseesseessteenseeenseenseeenseeseennns 35
SYNCAFONOUS CAlIS ... s et e e e b e e te e s reeeseesnaesnneans 36
S = | = USSR 37
L= TP 38
TIMEINTEIVEL ...ttt bbb e et e e et e et et e te st b e 40
(@001 7= o /0] o HN PO PRURUSPSTORRON 42
IMISC FEFEIEINCE ...ttt st b et e be et e e e e sbeeeeeneans 43
TEXE SYMIIOL ...ttt e e e et e e r et e e e e reeaeereenns 45
(O0 001107 o | SRR 45
o 1 o) o PSR 45
High-18VEl MSC (HMSC) ...ttt 46
Datatypes ------- === - o e e oo 48
Type definitioNS and NEAEY'Soovi e 48
VAITADIES ...t bbbttt e e bbb Rt ne e 48
O 1o 1 o LS 48
EXEErNEl TUNCHIONS ...ttt st e et st sbenbe b 48
Memory management - - - - - - - - - - - - - - - oo oo oo o o 49
(€0l 7= IR = = o - S 49
eSSz o Ll o= = 01 U SRR 49
N1 G e R LR LR 50
SEMANtiC =------c-mc s e e e et 51
Object orientation ----------------- oo 52
PACKBJE ...t R b a b n e e e 52
BIOCK ClBSS ... ettt et et e et e b e eesae e beeeesneenaeenseeneenneas 52
PrOCESS ClaSS..... ettt ettt sttt ettt b et esb e bt e st et et et e ntentenbenreas 54
Symbolscontained indiagrams - ----------------“--“---“---------- 61
Textual representation - -------------------““““--- oo 62
Examplesystems - - - --- - - oo oo 66
PING PONQ ...ttt e bbbt R e e e e 66
A global variable ManiPUIBLION...........coiiiiiiier e 70
KeyWOrds ---------cmmmm e 74
Differenceswith classical SDL --------------------“-““-“-““oo - 75
DAATYPES. ...t e 75
S =0 0] =SS 75
TNPULS.ttt r e s e r e e n e 75
N E= 1 TR UPPRPUPRPRPIIN 75
(@ o)1= ot lo 1=t =11 o] o 1S 75
Lexical ruleS - ---- - - - s m oo oo oo 77
GloSSAry =-------ccmcmee et n e m e 78

Page 4 Specification & Description Language - Real Time

SDL-RT Standard V 1.0 1 SDL

Specification & Description Language - Real Time Page 5

1 SDL SDL-RT Standard V 1.0

Page 6 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

1 - Introduction

Asitsname states, SDL-RT isbased on SDL standard from I TU extended with real time concepts.

SDL has been developed in the first place to specify telecommunication protocols but experience
showed some of its basic principles could be used in awide variety of real time and embedded
systems. Its main benefits are:

* architecture definition,

» graphical finite state machine,

 object orientation.

But SDL was not meant to design real time systems and some major drawbacks prevented it to be
widely used in the industry:

» obsolete data types,

 old fashioned syntax,

* NO pointer concept,

* no semaphore concept.

SDL being agraphical language it is obviously not suited for any type of coding. Some parts of
the application still need to be written in C or assembly language. Furthermore legacy code or off
the shelf libraries such as RTOS, protocol stacks, drivers have C APIs. Last but not least thereis
no SDL compilers so SDL need to be trandlated into C code to get down to target. So all SDL ben-
efits are lost when it comesto real coding and integration with real hardware and software.

Considering the above considerations areal time extension to SDL needed to be defined that
would keep the benefits of SDL and solve its weaknesses. The ssimpler the better ! SDL-RT was
born based on 2 basic principles:

* Replace SDL datatypesby C,

* Add semaphore support in the behavior diagrams.

Theresult, SDL-RT, isa:

simpler,

object oriented,

graphical language,

supporting al basic real time concepts,
based on standard languages.

Specification & Description Language - Real Time Page 7

1 SDI-I ;i i SDL-RT standard V1.0

2 - Architecture

2.1 - System

The overall design is called the system and everything that is outside the system is called the
environment. There is no specific graphical representation for the system but the block represen-
tation can be used if needed.

2.2 - Agents

The system can be decomposed in functional blocks. A block does not imply any physical imple-
mentation on the target, it is a structuring element. A block can be further decomposed in blocks
and so on allowing to handle large systems. A block symbol is asolid rectangle with its namein
it:

MyBIlock

A simple block example.

When the SDL-RT system is decomposed down to the simplest block, the way the block fulfilsits
functionality is described with processes. A lowest level block can be composed of one or several
processes. To avoid having blocks with only one processit is allowed to mix together blocks and
processes at the same level e.g. in the same block.

A process symbol is arectangle with cut corners with its namein it:

A simple process example.

A processis basically the code that will be executed. It is afinite state machine based task (Cf.
“Behavior” on page 13) and has an implicit message queue to receive messages. It is possible to
have several instances of the same process running independently. The number of instances
present when the system starts and the maximum number of instances are declared between

parenthesis after the name of the process. The full syntax in the process symbol is:

<process nhame>[(<number of instances at startup>, <maximum nunber of instances>)]

If omitted default values are 1 for the number of instances at startup and infinite for the maximum
number of instances.

Page 8 Specification & Description Language - Real Time

SDL-RT standard V1.0

NTIRT,

MyProcess(0,10) ’

An exampl e process that has no instance at startup and a maximum of 10 instances.

The overall architecture can be seen as a tree where the leaves are the processes.

MySystem
blockA blockB
processA 1l ’ ‘processAZ(O,lO)‘ blockC ‘proceﬁsBl(l,l)’
‘ processC1 ’ ‘ processC2 ’ ‘ processC3 ’

A view of the architecture tree

When viewing a block, depending on the size of the system, it is more comfortable to only repre-

sent the current block level without the lower agents.

Specification & Description Language - Real Time

Page 9

1 SDI-I ;i i SDL-RT standard V1.0

3 - Communication

SDL-RT isevent driven, meaning communication is based on message exchanges. A message has
aname and a parameter that is basically a pointer to some data. Messages go through channels
that connect agents and end up in the processes implicit queues.

Channels have names and are represented by a one-way or two-ways arrows. A channel nameis
written next to the arrow without any specific delimiter. The list of messages going in a specific
way are listed next to the arrow between brackets and separated by commas. Messages can be
gathered in message lists, to indicate a message list in the list of messages going through a chan-
nel the message list is surrounded by parenthesis. Note the same message can be listed in both
directions.

channelName
. >
aOneWayChannel example: [messagel.
message2,
message3]
channelName
alwoWayChannel example: - -
[message4, [messagel,
messageb, message2,
message?] message3]

Channels end points can be connected to: the environment, another channel or a process. Graphi-
cally achannel can be connected to a block but it is actually connected to another channel inside
the block. To represent the outside channel s connected to the block at the upper architecture level,
ablock view is surrounded by aframe representing the edge of the block. The upper level chan-
nels connected to the block are then represented outside the frame and channels inside the block
can be connected to these upper level channels. Note a channel can be connected to several chan-
nels. In any case consistency is kept between levels e.g. all messagesin achannel are listed in the
upper or lower level channels connected to it.

Page 10 Specification & Description Language - Real Time

SDL-RT standard V1.0

NTIRT,

Example:
Let us consider an SDL-RT system made of two blocks: blockA and blockB.
mySystem A [messages,
message9]
chEnvB
Y [message7]
chEnvA chAB
p| DIOCKA | g p| DblockB
[messagel, [messaged] [messages,
message2, messaged]
message3]

An example system view

The channels chEnvA and chEnvB are connected to the surrounding frame of the system ny Sys-
t em They define communication with the environment, e.g. the interface of the system. chEnvA
and chAB are connected to bl ockA and define the messages coming in or going out of the block.

chAB
blockA A [messageb,
messages]
chABD
Y [messaged]
chEnvA chEnvAC p| DlockC | g chCD p| blockD
[messagel, [message4, [messageb,
message2, messagel0, messagel?2,
message3] messagell] messagel3]

[messagel4]

An inner block view

The inner view of block blockA showsit is made of the blocks blockC and blockD and of the pro-
cess processE. chEnvAC is connected to the upper level channel chEnvA and chABD is connected

Specification & Description Language - Real Time

Page 11

1 SDI-I ;i i SDL-RT standard V1.0

to the upper channel chAB. The flow of messages is consistent between levels since for example
the messages coming in block blockA through chEnvA (messagel, message2, message3) are also
listed in chEnvAC.

Page 12 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

4 - Behavior

First of all a process has an implicit message queue to receive the messages listed in the channels.
A process description is based on an extended finite state machine. A process state determines
which behavior the process will have when receiving a specific stimulation. A transition is the
code between two states. The process can be hanging on its message queue or a semaphore or run-
ning e.g. executing code.

SDL-RT processes run concurrently; depending on the underlying RTOS and sometimes on the
target hardware the behavior might be slightly different. But messages and semaphores are there
to handle process synchronization so the final behavior should be independent of the RTOS and of
the hardware. Since SDL-RT is open to any C code it is up to the designer to make sure this state-
ment staystrue!

Note that in a state diagram the previous statement is always connected to the symbol upper frame
and the next statement is connected to the lower frame or on the side.

4.1 - Sart

The start symbol represent the starting point for the execution of the process:

(D

Sart symbol

The transition between the Start symbol and the first state of the processis called the start transi-
tion. Thistransition isthe first thing the process will do when started. During thisinitialization
phase the process can not receive messages. All other symbols are allowed.

4.2 - Sate

The name of the process state is written in the state symbol:

< <state name> >

Sate symbol

The state symbol means the processis waiting for some input to go on, the allowed symbolsto
follow a state symbol are:
* message input
the message could be coming from an external channel, or it could be a timer message
started by the processitself.
* continuous signal

Specification & Description Language - Real Time Page 13

1 SDI-I ;i i SDL-RT standard V1.0

when reaching a state with continuous signals, the expressionsin the continuous signals
are evaluated following the defined priorities. All continuous signal expressions are eval-
uated before the message input !
* save
the incoming message can not be treated in the current process state. It is saved until the
process state changes. When the process state has changed the saved messages are
treated first (before any other messages in the queue but after continuous signals).
Some transitions can be valid for several states, the different state names are then listed separated
by acomma. A star ('*’) means all states.

Examples:
, N idle,
idle maintenance
| | ‘

megl msg2 msg1 <a > o>
In statei di e nsgl can be Messagemsgl can In statesi dl e and
recelved and msg2 is saved. be received in any mai nt enance the
state expression a>0 is

first evaluated.

A process in a specific state can receive severa types of messages or treat several continuous sig-
nals. To represent such a situation it is possible to have several message inputs connected to the
state or to split the state in several symbols with the same name.

Examples:

() () (o

| D

sigl si g2 f sigl f sigl

Two ways of writing in statei dl e,
si gl or si g2 can bereceved.

4.3 - 3op
A process can terminate itself with the stop symbol.

Page 14 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

X

Sop symbol

Note a process can not kill another process, it can only kill itself.
Thereis no syntax for that symbol.

4.4 - M essage input

The message input symbol represent the type of message that is expected in an SDL-RT state. It
alwaysfollows an SDL-RT state symbol and if received the symbols following the input are exe-
cuted.

<Message name>
[(<data | engt h>,
IKpoi nter on data>)]

Message input symbol

Aninput has a name and can come with parameters. To receive the parametersit is necessary to
declare 2 variables that will be the parameter length and the pointer on the parameters.

The syntax in the message input symbol is the following:
<Message nanme> [(<length of data>, <pointer on data>)]

<dat a | engt h>isavariable that needs to be declared.
<poi nter on dat a> needsto be declared.

Examples:

ConReq
(myDat aLen, ConConf
nmy Dat a)

4.5 - M essage output

A message output is used to exchange information. It puts datain the receiver’s message queuein
an asynchronous way.

Message output symbol

Specification & Description Language - Real Time Page 15

1 SDI-I ;i i SDL-RT standard V1.0

The syntax in the message output symbol can be written in 2 ways depending if the queue Id of
the receiver isknown or not. A message can be sent to aqueue Id or a process name. When com-
muni cating with the environment, a special syntax is provided.

4.5.1 Queueld

KVESSage name>

[(<data | engt h>,
IKpoi nter on data>)]
TO_I D

I<recei ver queue id>

Message output to a queue id

The symbol syntax is:
<nessage nane>[(<l ength of data>, <pointer on data>)] TO ID <receiver queue id>
It can take the value given by the SDL-RT keywords:

PARENT The queue id of the parent process.
SELF The queue id of the current process.
OFFSPRI NG The queue id of the last created process if any or NULL if none.
SENDER The queue id of the sender of the last received message.
Examples:

ConReq

ConConf TO ID
256, Dat a — .
SI'O D rF%RENT) @aCal cul at edRecei ver,

4.5.2 Process name

KVESSage name>

[(<data | engt h>,
Kpoi nter on data>)]
ITO_NAME

I<r ecei ver nane>

Message output to a process name

The syntax is:

<nessage name>[(<l ength of data>, <pointer on data>)] TO NAME <receiver name>
<recei ver nane> isthe name of aprocessif unique or it can be ENV when simulating and the
message is sent out of the SDL system.

Examples:.
ConReq ConReq
(OxFF, nyDat a) (T(r;yDataLength, nyDat a)
TO_NANE ENV r ecei ver Process
Note:

Page 16 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

If several instances have the same process name (several instances of the same process for exam-
ple), the’ TO_NAME’ will send the message to the first created process with the corresponding
name. Therefore this method should no be used when the process name is not unique within the
System.

4.5.3 Environment

KVESSage nane>

[(<data | engt h>,
IKpoi nter on data>)]
TO_ENV

I<KC macro name>

Message output to environment

The symbol syntax is:

<nmessage name>[(<l ength of data>, <pointer on data>)] TO ENV <C macro nane>
<C macr o name> isthe name of the macro that will be called when this SDL output symbol is hit.
If no macro is declared the message will be sent to the environment.

Example:
ConReq IConReq
(OxFF, nyDat a) _(rgygaNt\/aLength, nyDat a)
TO_ENV MESSAGE_TO HDLC
In this second example the generated code will be:
MESSAGE_TO _HDLC(ConReq, nyDat aLengt h, nyDat a)
Note:

When sending data pointed by <pointer on data>, the corresponding memory should be allocated
by the sender and should be freed by the receiving process. This is because thismemory areais
not copied to the receiver; only the pointer value is transmitted. So after being sent the sender
should not use it any more.

4.6 - Message save

A process may have intermediate states that can not deal with new request until the on-going job
isdone. These new requests should not be lost but kept until the process reaches a stable state.
Save concept has been made for that matter, it basically holds the message until it can be treated.

<Message nane>

Save symbol

The Save symbol is followed by no symbol. When the process changes to a new state the saved
messages will be the first to be treated (after continuous signals if any).

Specification & Description Language - Real Time Page 17

1 SDI-I ;i i SDL-RT standard V1.0

The symbol syntax is:
<message name>
Even if the message has parameters.

Example:
| [|
nmsgl nsg2 < nsg3 nmsg3 nsgl
< inter ><stable> <stab|e><stable>
Let’'sconsider the above pro- msg3, nsg2, negl. msg3 will Sincensg3 hasbeen saved it
cessingstatei nt er torecelve besaved, nsg2 will makethe will first be treated and
the following messages: process go to state st abl e. finally nsg1.

4.7 - Continuous signal

A continuous signal is an expression that is evaluated right after a process reaches a new state. It
is evaluated before any message input or saved messages.

<condi tion
expressi on>

Continuous signal symbol

The continuous signal expression to evaluate can contain any standard C expression that returns a
C true/false expression. Since an SDL state can contain several continuous signal a priority level
needs to be defined with the PRI O keyword. Lower values correspond to higher priorities. A con-
tinuous signal symbol can be followed by any other symbol except another continuous signal or a
message input. The syntax is:

<C condi tion expression>

PRI O <priority level >

Page 18 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

Example:

< idle >
[|
msgl < < a>5 > <b<10) ¥ (c!(>
PRI O 2 PRIO 1

In the above example, when the processgets evaluate expression a > s. If the expressionis
in state idle it will first evaluate expression not true or if the process stayed in the same
(b<10) || (ct=0). If theexpressionisnottrueor stateit will executensgl transition.

if the process stayed in the same state it will

4.8 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Example:

¥ Say hi to your friend */
printf("Hello world !'\n");
for (i=0;i<MAX;i++)
{
newString[i] = oldString[i];
}

4.9 - Decision

A decision symbol can be seen asa C switch / case.

or

Decision symbols

Sinceit isgraphical and therefore uses quite some space on the diagram it is recommended to use
it when its result modifies the resulting process state. The decision symbol is adiamond with
branches. Since adiamond is one of the worst shape to put text in it, it can be a"diamonded"” rect-
angle. Each branch can be seen as a case of the switch.

The expression to evaluate in the symbol can contain:

Specification & Description Language - Real Time Page 19

1 SDI-I ;i i SDL-RT standard V1.0

» any standard C expression that returns a C true/false expression,

« an expression that will be evaluated against the valuesin the decision branches.
The values of the branches have keyword expressions such as:

¢ > <, >=,<=, = ==

e true, false, else
The el se branch contains the default branch if no other branch made it.

Examples:
aVal ue
== nmyVal ue
bVval ue
true fal se el se == 2 el se < 2

4.10 - Semaphoretake
The Semaphore take symbol is used when the process attempts to take a semaphore.

<senmaphore nane>
(<timeout option>)

Semaphore take symbol

To take a semaphore, the syntax in the ‘ semaphore take SDL-RT graphical symbol’ is:
<semaphor e name>(<ti nmeout option>)
where <t i meout option>is:
* FOREVER
Hangs on the semaphore forever if not available.
« NO WAIT
Does not hang on the semaphore at all if not available.
* <number of ticksto wait for>
Hangs on the semaphore the specified number of ticksif not available.

Page 20 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

4.11 - Semaphore give

<senaphore nane>

Semaphore give symbol

To give a semaphore, the syntax in the * semaphore give SDL-RT graphical symbol’ is:
<semaphor e nanme>

4.12 - Timer start

<timer nane>
(<tinme out value
in tick counts>)

Timer start symbol

To start atimer the syntax in the *start timer SDL-RT graphical symbol’ is:
<timer nanme>(<tinme value in tick counts>)
<time value in tick counts>isusualy an‘int’ butis RTOS and target dependant.

4.13 - Timer stop

<ti mer nane>

Timer stop symbol

To cancel atimer the syntax in the ‘cancel timer SDL-RT graphical symbol’ is:
<ti mer name>

4.14 - Task creation

<process nane>
[: <process cl ass>]
[PRIO <priority>]

Task creation symbol

To create a process the syntax in the create process symbol is:
<process nane>[:<process class>] [PRIO <priority>]

Specification & Description Language - Real Time Page 21

NTIRT,

SDL-RT standard V1.0

to create one instance of <pr ocess cl ass> named <pr ocess name> with priority <priority>.

Examples.

nmyProcess

anot her Pr ocess:
aCl assOf Process

nmyPr ocess
PRI O 80

4.15 - Procedure call

[<return variable> =]
<pr ocedure nane>
({<paraneters>}*);

Procedure call symbol

The procedure call symbol isused to call an SDL-RT procedure (Cf. “Procedure declaration” on
page 29). Sinceit is possible to call any C function in an SDL-RT action symbol it isimportant to
note SDL-RT procedures are different because they know the calling process context, e.g. SDL-
RT keywords such as SENDER, OFFSPRING, PARENT are the ones of the calling process.

The syntax in the procedure call SDL graphical symbol isthe standard C syntax:

[<return variabl e> =] <procedure name>({<paramneters>}*);

Examples:

myResult =
nyProcedur e
(myPar aneter);

4.16 - Connectors

anot her Procedure();

<connect or nane>

Connector out

Connectors are used to:

<connect or nane>

Connector in

» gplit atransition into several pieces so that the diagram stays legible and printable,

Page 22

Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

* to gather different branches to a same point.
A connector-out symbol has a name that relates to a connector-in. The flow of execution goes
from the connector out to the connector in symbol.

A connector contains a name that has to be unique in the process. The syntax is:
<connector nane>

Examples:
printf("Hello "); | p nmyLabel
s/

| P
| v |
| 4 |
I

myLabel v 7 V

printf("world !'\n");

4.17 - Transition option

Transition options are similar to C #i f def .

Transition option symbol

The branches of the symbol have valuest r ue or f al se. Thet r ue branch is defined when the
expression is defined so the equivalent C codeiis:

#i f def <expression>

The branches can stay separated to the end of the transition or they can meet again and close the
option as would do an #endi f .

Specification & Description Language - Real Time Page 23

1 SDI-I ;i i SDL-RT standard V1.0

DEBUG
| |
true false
| |
a = 2; a = 2;
b = 3; b = 3;
myLogFunction(a, b);
|
EXTEND
| |
true false
| |
a = 2; a = 4;
b = 3; b = 4;
c = 4; c = 10;

idle mai nt enance

4.18 - Comment

The comment symbol allows to write any type of informal text and connect it to the desired sym-
bol. If needed the comment symbol can be left unconnected.

| Free text to
——{coment a con-
|nected synbol .

Comment symbol

Page 24 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

Example:

(idle
r . X
nsgl i ndi cates

msgl "t he systemis
r eady.

4.19 - Extension

The extension symbol is used to complete an expression in a symbol. The expression in the exten-
sion symbol is considered part of the expression in the connected symbol. Therefore the syntax is
the one of the connected symbol.

<connect ed

—_— synbol
synt ax>
Extension symbol
Example:
(myDat aLengt h,
ConReq nyDat a)

TO_ENV
MESSAGE_TO HDLC

isequivalent to:

IConReq

(myDat aLengt h, nyDat a)
TO_ENV
IMESSAGE_TO_HDLC

4.20 - Procedure start
This symbol is specific to a procedure diagram. It indicates the procedure entry point.

Specification & Description Language - Real Time Page 25

1 SDI-I ;i i SDL-RT standard V1.0

Procedure start symbol

There is no syntax associated with this symbol.

4.21 - Procedurereturn
This symbol is specific to a procedure diagram. It indicates the end of the procedure.

@ [<return val ue>]

Procedure return symbol

This symbol is specific to a procedure diagram. It indicates the end of the procedure. If the proce-
dure has areturn value it should be placed by the symbol.

4.22 - Text symbol
This symbol isused to declare C types variables.

<any C | anguage instructions >

The syntax is C language syntax.

4.23 - Additional heading symbol
This symbol isused to declare SDL-RT specific headings.

Additional heading symbol

It has a specific syntax depending in which diagram it is used.

Page 26 Specification & Description Language - Real Time

SDL-RT standard V1.0

SIIRT

4.24 - Symbolsordering

The following table shows which symbols can be connected to a specific symbol.

The symbol in
this column can
be followed by
the ticked sym-
bolsin itsrow.

Ssave

Start

<||State
 |[Stop

« [[input
=|loutput

. |[continuous signal

x|laction

x<||decision

x|[semaphore take
x|[semaphore give

=< |[timer start
. [timer stop

=< |[task creation

| [procedure call
x|lconnector in

% ||connector out

x| [transition option
. |[procedure start

. ||procedure return

state

x

x

x

stop

input

output

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

x| X

save

continuous

action

semaphore take

semaphore give

timer start

timer stop

task creation

procedure call

X | X[X| X| X| X| X| X

X| X | X| X| X| X| X]| X

X| X | X| X| X| X| X]| X

X| X | X| X| X| X| X]| X

X| X | X| X| X| X| X]| X

X | X[X| X[X| X[X]| X

X| X[X| X[X| X[X]| X

X| X | X| X| X| X| X]| X

X| X | X| X| X| X| X| X

X| X[X| X| X| X| X| X

X | X[X| X[X| X[X]| X

X | X[X| X[X| X[X]| X

X| X[X| X| X| X| X| X

X| X[X| X| X| X| X| X

X| X[X| X[X| X[X]| X

connector out

connector in

transition option

procedure start

X | X| X

X | X X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X| X

X | X

X | X| X

X | X| X

procedure return

The table above should be read row by row. The symbol in the left column can be followed by the
ticked symbols onitsrow. For example the stop symbol can not be followed by any other symbol.
The state symbol can be followed by input, save, or continuous signal symbols.

Specification & Description Language - Real Time

Page 27

1 SDI-I ;i i SDL-RT standard V1.0

5 - Declarations

5.1 - Process
A processisimplicitly declared in the architecture of the system (Cf. “ Architecture” on page 8)
since the communication channels need to be connected.

aProcess

Process symbol

A process has an initial number of instances at startup and a maximum number of instances. A
process can also be an instance of a process class (Cf. “ Object orientation” on page 52), in that
case the name of the class follows the name of the instance after a colon.

The general syntax is:

<process instance nane>[:<process class>][(<initial nunmber of instances>, <nmaxinmum
nunber of instances>)]

When a process is an instance of a process class the gates of the process class need to be con-
nected in the architecture diagram. The names of the gates appear in the process symbol with a
black circle representing the connection point.

<process nane>:
<process cl ass nane>

<gate nane

Process class instance

The messages defined in the package going through the gates must be consistent with the mes-
sages listed in the architecture diagram where the process instance is defined.

Page 28 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

Example:

‘ myPr ocess |
si g3]
[sig2]

gate2
aProcess: aProcessd ass
upper Level Channel |-g p @Uatel
[sigQutl] [siglnl]

5.2 - Procedure declar ation

An SDL-RT procedure can be defined in any diagram: system, block, or process. It is usually not
connected to the architecture but since it can output messages a channel can be connected to it for
informational purpose.

<return type>

<function name>
({<paraneter type>
<parameter nane>}*);

Procedure declaration symbol

The declaration syntax is the same as a C function. A procedure definition can be done graphi-
cally with SDL-RT or textualy in astandard C file.

5.2.1 SDL-RT defined procedure

If defined with SDL-RT the calling process context isimplicitly given to the procedure. Soif a
message output is done, the message will be output from the process calling the procedure. That is
why the message should be defined in one of the channels connected to the process instead of a
channel connected to a procedure. To call such a procedure the procedure call symbol should be
used.

Specification & Description Language - Real Time Page 29

1 SDI-I ;i i SDL-RT standard V1.0

5.2.2 C defined procedure
If defined in C language the process context is not present. To call such a procedure a standard C
statement should be used in a action symbol.

Example:
int
cal cul at eCRC | aProcess
(int datalLength,
char *pData);
[s1g3]
[sig2]
bProcess
upper Level Channel <=
[sigQutl] [siglnl]
5.3 - M essages

Messages do not need any declaration. They are self declared when listed in a channel. It is possi-
ble to declare message lists to make the architecture view more synthetic. Such a declaration can
be made at any architecture level with the additional heading symbol. The syntax is.
SDL_RT_MESSACE LI ST <nessage |ist nane> = <message nane> {, <message nanme>}*;

A message list can contain a message list, the included message list name is surrounded by paren-
thesis.

Example:

myMessagelLi st = nmsgl, nsg2;
SDL_RT_MESSAGE_LI ST
| anot her MessagelLi st = (nyMessageList), nsg3;

54-Timer's

There is no need to declare timers. They are self declared when used in a diagram.

Page 30 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

5.5 - Semaphores

Semaphores can be declared at any architecture level. Since each RTOS has its own type of sema-
phores with specific optionsthere will be no detailed description of the syntax. The general syntax
in the declaration symbol is:

<senmaphore name>({<list of options>[,]}*);

<senmaphore type>

Semaphore declaration

It isimportant to note the semaphore isidentified by its name.

Specification & Description Language - Real Time Page 31

1 SDI-I ;i i SDL-RT standard V1.0

6-MSC

SDL-RT integrates the Message Sequence Chart dynamic view. On such a diagram, time flows
from top to bottom. Lifelines represent SDL-RT agents or semaphores and key SDL-RT events
are represented. The diagram put up front the sequence in which the events occur.

In the case of embedded C++ it is possible to use a lifeline to represent an object. In that case the
typeisobj ect and the name should be <obj ect nane>: <cl ass nane>

6.1 - Agent instance

An agent instance starts with an agent instance head followed by an instance axis and ends with
an instance tail or an instance stop as shown in the diagrams bel ow.

[<type>] [<type>]
<name> <name>

]

Lifeline with an instance Lifeline with an instance
tail symbol stop symbol

The type of the agent can be specified on top of the head symbol and the name of the agent iswrit-
ten in the instance head symbol. Theinstance tail symbol means the agent lives after the diagram.
The instance stop symbol means the agent no longer exist after the symbol.

When an agent creates another agent a dashed arrow goes from the parent agent to the child agent.

Page 32 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

Example:

process

pParent
process
___________________ > pO_TTsprl ng

]]

Process pParent creates process pOffspring

6.2 - Semaphore representation

A semaphore representation is made of a semaphore head, alifeline, and a semaphore end or tail.
The symbols are the same as for a process except for the head of the semaphore.

[semaphor e] [semaphor €]

ﬂ <nane> ﬂ <nane>

Semaphore with an Semaphore with an
instance tail symbol instance stop symbol

6.3 - Semaphore manipulations

Several cases are to be considered with semaphore manipulations. A process makes an attempt to
take a semaphore, its attempt can be successful or unsuccessful, if successful the process release
the semaphore. During the time the semaphore istaken, itslifeline gets thicker until it is released.

Specification & Description Language - Real Time Page 33

1 SDI-I ;i i SDL-RT standard V1.0

The manipulation symbols are the following:

_______ _>ﬂ <sem nane> ﬂ <sem nane>
Semaphore creation from aknown Semaphore creation from an
process. unknown process.
take »{ take
Semaphore take attempt. Semaphore take attempt on a
locked semaphore.
-+--------- -+ ----------
Semaphore take successfull. Semaphore take unsuccessfull.
give | |
Semaphore give. Semaphore continues.
———————— =< X
Semaphoreiskilled by aknown Semaphoreiskilled by an
process. unknown process.

Page 34 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

Example:
myProcl nmyProc2
——————————————— >ﬂ my Sem
take {
4_ ______________________
take
g

ProcessnyPr oc1 first creates semaphore ny Sem then takesit successfully.
Process nyPr oc2 makes an attempt to take semaphore ny Sembut gets

blocked on it. Process myPr oc1 releases the semaphore so nyPr oc2 suc-

cessfully gets the semaphore. Process nyPr oc2 givesit back, and killsiit.

6.4 - M essage exchange

A message symbol isasimple arrow with its name and optional parameters next to it. The arrow
can be horizontal meaning the message arrived instantly to the receiver or the arrow can go down
to show the message arrived after a certain time or after another event. A message can not go up !
When the sender and the receiver are represented on the diagram the arrow is connected to their
instances. If the sender ismissing it is replaced by awhite circle, if the receiver ismissing itis
replaced by ablack circle.The name of the sender or the receiver can optionally be written next to
thecircle.

Specification & Description Language - Real Time Page 35

1 SDI-I ;i i SDL-RT standard V1.0

process block

sender receiver
run

keypad (™Y g i nitMsg

(12,"Hell o worl d\n")

r eadyMsg

start Msg

run

4* engi ne
]]

An external agent called keypad sendsr un message to process sender .
Processsender sendsi ni t Msg that is considered to be received immedi-
atly toblock r ecei ver. Block r ecei ver repliesr eadyMsg, processsender
sendsst art Msg, and block r ecei ver sendsr un to an external agent.

A message is considered received by an agent when it is read from the agent’s message queue; not
when it arrives in the message queue !

6.5 - Synchronous calls

This representation is used when using embedded C++ to show method calls on an object. Object
can be represented by lifelines. Synchronous calls are shown with an arrow to the instance repre-
senting the object. While the object has the focus its lifeline becomes a black rectangle and the
agent lifeline becomes awhite rectangle. That means the execution flow has been transferred to
the object. When the method returns a dashed arrow return to the method caller.

process object
keyboard I myPhoneBook:PhoneBook I
set _URL

("http://wwm. sdl-rt.org")

Processkeyboar d calls method set _URL from myPhoneBook object that is
an instance of PhoneBook class.

Page 36 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

6.6 - Sate

A lifeline represents a process and depending on itsinternal state a process reacts differently to
the same message. It isinteresting to represent a process state on itslifeline. It isaso interesting
to represent a global state for information. In that case the state symbol covers the concerned
instances. In both cases the same symbol is used.

Sate symbol
Example:
process process
[l |
idle
conReq >
< idle >
< conConf
< connect ed > < connect ed >

]]

Processserver goestoi dl e state. Processcal | er inits start transition
sendsaconReq to server and goesto statei dl e. Processser ver returns
an conConf message and goesto connect ed state. When conConf message
isreceived by processcal | er it aso movesto connect ed state.

Specification & Description Language - Real Time Page 37

1 SDI- SDL-RT standard V1.0

6.7 -Timers

Two symbols are available for each timer action depending if the beginning and the end of the
timer are connected or not. The timer name is by the cross and timeout value is optional. When
specified the timeout value unit is not specified; it is usually RTOS tick counts.

<timer nanme> <timer name> <timer name>
[(<timer time>)] [(<tinmer tine>)] [(<timer time>)]

)

Timer start connected Timer stop unconnected Timeout unconnected

<ti mer name> <tinmer nane> <ti mer nanme>
[(<timer tinme>)] [(<tinmer tinme>)] [(<tinmer tine>)]

Timer start unconnected Timer stop connected Timeout connected

\

<timer name>
[(<timer tinme>)]

.

Timer restart connected

Page 38 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDL

Examples:
process process
caller server
idle
conRe
g |
t ConReq
% (100)
< idle >
< conConf
%< t ConReq
< connect ed > < connect ed >

]]

Processcal | er triesto initiate connection with conReq message. At the
sametimeit startstimer t ConReq S0 that if no answer isreceived it will
retry connecting. If an answer isreceived the timer is cancelled and process
cal | er goesto state connect ed.

Specification & Description Language - Real Time Page 39

1 SDI-I ;i i SDL-RT standard V1.0

process process
[l |
idle
conRe
g '

t ConReq
(100)
< connecting
conReq >
t ConReq

(100)

< connecting

INLRRREA

E— E—

Processcal | er triesto initiate connection with conReq message. Since it
receives no answer after two tries it gives up and goes to unconnected state.

6.8 - Timeinterval
To specify atime interval between two events the following symbol is used.

<tinme constraint>

Time constraint syntax is the following:
» absolute timeis expressed with an @ up front the time value,

Page 40 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

» relativetimeis expressed with nothing up front its value,

» timeinterval isexpressed between square brackets,

» timeunit is RTOS specific -usually tick counts- unless specified (s, ms, ps).
Noteit is possible to use time constraint on asingle MSC reference.

Absolute time can also be specified with the following symbol:

<absolute tine value>_ . -

Examples:
Table 1. Examples of time constraint expressions
Expression Meaning
1. 3ms takes 1.3 msto do
[1,3] takes a minimum of 1 to amaximum of 3 time units

@12. 4s, 14. 7s] | should not occur before absolute time 12.4 s and should not finish after
absolutetime 14.7 s.

<5 takes lessthan 5 time units
process @4S process
[dien | - -
o idle
A kR
wor kReq >
[0, OX02FF]

g

wor kResp

Processser ver reaches statei dl e at absolute time 34 Sec.

Processcl i ent request process server to compute some work in less than
O0x02FF time units.

Specification & Description Language - Real Time Page 41

1 SDI-I ;i i SDL-RT standard V1.0

process process

caler server

[0, 200nE] % _____ C Connect i ng >

]

Connect i ng MSC should take |ess than 200mS.

6.9 - Coregion

Coregion is used whenever the sequence of events does not matter. Eventsin a coregion can hap-
pen in any order. The coregion symbol replaces the lifeline instance.

_
|
|
|
|
|
|
|

JR—

Coregion symbol

Example:

process

controller

st opEngi ne -

di splaylnfo -

Processcontrol | er
sends st opEngi ne and di spl ayl nfo or
sends di spl ayl nf o and st opEngi ne.

Page 42 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

6.10 - M SC reference
MSC reference allows to refer to another MSC. The resulting MSC is smaller and more legible.

C <MSC nane> >

M SC reference symbol

A reference concerns the connected instances. An instance is connected if itslifeline disappearsin
the symbol. An instance is not connected if it goes over the reference symbol.

Specification & Description Language - Real Time Page 43

1 SDI- SDL-RT standard V1.0

Example:
process process
[l]
idle
conRe
g -
t ConReq
% (100)
< idle >
< conConf
%< t ConReq
< connect ed > < connect ed >

]]

Connecting MSC

process process

< Connecti ng >

sendDat a

sendDat a

-

]]

Dat aTr ansfer MSC

TheDat aTr ansf er MSC startswith areferenceto Connect i ng MSC. That
means the scenario described in Connect i ng MSC is to be done before the
rest of the Dat aTr ansf er MSC occur.

Page 44 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

6.11 - Text symbol
The text symbol contains data or variable declarations if needed in the MSC.

<any C | anguage decl arati ons>

Text symbol

6.12 - Comment

Asits name states...

| Free text to
——{coment a con-
|nected synbol .

Comment symbol

6.13 - Action

An action symbol contains a set of instructionsin C code. The syntax is the one of C language.

Examples:

¥~ Say hi to your friend */
printf("Hello world !'\n");

for (i=0;i<MAX;i++)

{

newString[i] = oldString[i];

Specification & Description Language - Real Time Page 45

1 SDI-I ;i i SDL-RT standard V1.0

unsi gned char *full Data, *dat a;
int | engt h; |

process process

caller server

< Connecti ng >

sendDat a

(Tength, dat a) >
F—— = — — _
et py(| full Dat a
ful | Dat a, poi nter points
dat a, at the end of
l engt h); | buffer.
Lo _

]]

Dat aTr ansfer MSC

The action symbol contains standard C instructions related to data declarations.

6.14 - High-level MSC (HM SC)

High level MSC diagram is a synthetic view of how MSCsrelate to each other. It isonly afew
symbols: start, stop, alternative, parallel, state or condition, and M SC reference.

VA w

Pardlel Alternative
MSC reference State or condition

Page 46 Specification & Description Language - Real Time

SDL-RT standard V1.0

NTIRT,

The SDL-RT HM SC starts with the start symbol and ends with the stop symbol. The parallel sym-
bol means the following connected path will be executed in parallel. The Alternative symbol
means one and only one of the connected path is executed. Whenever two paths meet again the
path separator symbol isto be repeated. That meansif a parallel symbol is used that creates two
different paths, the parallel symbol should be used when the path merge back.

Symbols are connected with lines or arrows if clearer. A symbol is entered by its upper level edge

and leaved by any other edge.

Example:

di sconnect ed

(conFail ed) < conSucceeded >

(
D

(supervising) < dat aTr

ansf er >

0
D

< di sconnect >

The system startsin di sconnect ed state. Connection attempts are made,
either the conFai | ed scenario or the conSucceeded scenario is executed. If
conSucceeded isexecuted super vi si ng and dat aTr ansf er are executing
in parallel. They merge back to di sconnect and end the HMSC scenario.

Specification & Description Language - Real Time

Page 47

1 SDI-I ;i i SDL-RT standard V1.0

7 - Datatypes

The data types, the syntax and semantic are the ones of ANSI C language. Thereisno SDL-RT
predefined data types at all but just some keywords that should not be used in the C code. Consid-
ering the SDL-RT architecture and concepts surrounding the C code some important aspects need
to be described.

7.1 - Typedefinitions and headers
Types are declared in the text symbol:

<Any C type declaration >

Types declared in an agent are only visible in the architecture below the agent.

7.2 - Variables

Variables are declared after the type definitions in the same text symbol.

<Any C type definition >
<Any C gl obal variable definition >

Variables declared in an agent are only visible in the architecture below the agent. For example
global variables are to be declared at system level. A variable declared in ablock level isnot seen
by an upper level block. Variables declared in an SDL-RT processin atext symbol arelocal to the
process. They can not be seen or manipulated by any other process.

7.3 - C functions

SDL-RT internal C functions are to be defined through the SDL-RT procedure symbol. An SDL-
RT procedure can be defined graphically in SDL-RT or textually in C. When defined in C the pro-
cedure call symbol should not be used. A standard C statement in an action symbol should be
used.

7.4 - External functions

External C functions can be called from the SDL-RT system. These should be prototyped in the
system or in an externa C header. Itisup to an SDL-RT tool to gather the right files when compil-
ing and linking.

Page 48 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

8 - Memory management

Real time systems need to exchange information. The best way to do so isto have areserved
chunk of shared memory that several tasks can access. SDL-RT implicitly runs on such an under-
lying architecture since it supports global variables and exchanges message parameters through
pointers. That raises memory management rules to follow to ensure a proper design.

8.1 - Global variables

SDL-RT processes can share global variables. Thisisvery powerful but also very dangerous since
the data can be corrupted if manipulated without caution. It is strongly recommended to use sema-
phores to access global variables to be sure data is consistent. An example of such adesignis
given later in this document.

8.2 - Message par ameters

Parameters of a message are passed through a pointer. Thisimplies the data pointed by the send-
ing process will be accessible by the receiving process. Therefore a good design should meet the
following rules:
» Sending processes allocate specific memory areas to store parameters,
* Oncethe message is sent the parameter memory area should never be manipulated again
by the sending process,
» Receiver processes are responsible for freeing memory containing message parameters.

Specification & Description Language - Real Time Page 49

1 SDI-I ;i i SDL-RT standard V1.0

9 - Syntax

All SDL-RT names must be a combination of alphabetical characters, numerical characters, and
underscores. No other symbols are allowed.

Examples:

nmyPr ocessNanme
my_procedure_nane
bl ock_1

_senmaphor eNane

Page 50 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

10 - Semantic

Since some SDL-RT concepts can be reached through their names (processes, semaphores) each
name in the system must be unique. Thiswill make the design more legible and ease the support
of SDL-RT in atool.
It is suggested to use the following convention for names:

* block names should start with'b’,

» process names should start with 'p’,

* timer names should start with 't

» semaphore names should start with’s’,

» global variables should start with'g'.

Specification & Description Language - Real Time Page 51

1 SDI-I ;i i SDL-RT standard V1.0

11 - Object orientation

11.1 - Package

Object orientation in SDL-RT allows to define classes of processes and blocks. Classes defini-
tions are gathered in an SDL-RT package. To be able to use classes defined in a package, an SDL -
RT system should explicitly import the package with USE keyword in an additional heading sym-
bol at system level.

A package is a separated entity that contains agents or classes of agents. It is referenced by its
name.

[

<package nane>

It can contain:

* blocks,
classes of blocks,
processes,
classes of processes,
procedures,
data definitions.

11.2 - Block class

Defining ablock class allows to use the same block several timesin the SDL-RT system. The
SDL-RT block does not support any other object oriented features. A block class symbol isa
block symbol with adouble frame. It has no channels connected to it.

<bl ock cl ass nane>

A block class can be instantiated in ablock or system. The syntax in the block symbol is:
<bl ock i nstance nane>: <bl ock cl ass nanme>

Page 52 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

Messages come in and go out of a block class through gates. In the block class diagram gates are
represented out of the block class frame. When a block classis instantiated the gates are con-
nected to the surrounding SDL-RT architecture. The messages listed in the gates are to be consis-
tent with the messages listed in the connected channels.

—————————————————

<bl ock instance nane>:
<bl ock cl ass nane>

_._______

<gat e nane>

Specification & Description Language - Real Time Page 53

SDL SDL-RT standard V1.0

Example:
nmyBl ockC ass
Gat e2
4 cEnv2
o= > @< aProcess
[si gQut 2] [sigln2] [si gQut 2] [sigln2]
cl nt ernal
0« nyGat el > @ bProcess
[sigQut1, [siglni] [si gQut 1] [siglni]
si gQut 3]
Definition diagram of myBlockClass block class
mySystem A [messages,
message9)
chEnvB
[message7]
T)
chEnvA 1 blockA:myBlockClass 1 blockB
| I chAB
|- », nmyGat el my Gat e2 ,4 -
[sigQut1l, [siglnl] | | [sigin2] [sigQut 2]
sigout3y T ------7-7"

blockA is an instance of myBlockClass

11.3 - Process class

Defining a process class allows to:
* have several instances of the same process in different places of the SDL-RT architec-
ture,
* inherit from a process super-class,
* gpecializetransitions and states.

Page 54 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

A process class symbol is a process symbol with a double frame. It is has no channels connected
toit.

MyProcess

A process class can be instantiated in ablock or a system. The syntax in the process symbol is:
<process i nstance nane>: <process cl ass nanme>

Messages come in and go out of a process class through gates. In the process class diagram, gates
are represented out of the process class frame. When a process class is instantiated the gates are
connected to the surrounding SDL-RT architecture. The messages listed in the gates are to be con-
sistent with the messages listed in the connected channels. The names of the gates appear in the
process symbol with a black circle representing the connection point.

e N

<process nane>:
<process cl ass nane>

\
|
|
|
|
|
<gate nane>e@
)

_———— = = =~

e e e - — o

nmyPr ocess
[sig3]
[sig2]
;" gate2 N

aProcess: aProcessd ass

upper Level Channel

|

|
- ».Igatel
[sigQut1] [siglnl] !

N

N e e e - — o

Specification & Description Language - Real Time Page 55

1 SDI-I ;i i SDL-RT standard V1.0

SDL-RT transitions, gates and data are the elements that can be redefined when specializing. In
the sub class the super classto inherit from is defined with the | NHERI TS keyword in an addi-
tional heading symbol. There are several waysto specialize a process class depending on what is
defined in the super class.

» If the element is new in the sub class, it is smply added to the super class definition,

-
I
L

nsg3
nyGat el
oime (e
[msg3]
MySuperClass MyClass
(stabl e)
1
nsg3 nmsgl <
nyGat el ‘ I
o——————>»0 < idle ><unstable>
[msg3]

An instance of MyClass

Page 56 Specification & Description Language - Real Time

SDL-RT standard V1.0

2

{sDL

* If the element exists in the super class, the new element definition overwrites the one of

the super class,

i nt

nmyVar ;

stabl e

myVar = 2;

" N
T I NHERI TS MySuper Cl ass;
L

stabl e

nsg3

myVar = 3;

unst abl e

A

Gatel
o 2 .o
[msg3]
MySuperClass
i nt nyVar; W
nmsg3
myVar = 3;
nyGat el
nsg

An instance of MyClass

* A classcan be defined as abstract with the ABSTRACT keyword. It means the class can not
be instantiated asiis; it needsto be specialized. A class can define abstract transitions or

Specification & Description Language - Real Time

Page 57

1 SDI-I ;i i SDL-RT standard V1.0

abstract gates. It means the abstract transition or gate exists but that it is not defined.
Such aclassis obviously abstract and needs to be defined as such.

lI—NIERI?S ;yA;st ;ct_Sup_er Cl_ass_; N
Lo - |
stabl e st abl e
ABSTRACT rrsg3
nsg3
nyGat el
o———>»0 unst abl e
[msg3]
MyA bstractSuperClass MyClass

nyGat el
o————»0 unst abl e
[msg3]

An instance of MyClass

Page 58 Specification & Description Language - Real Time

SDL-RT standard V1.0 SDL

Here comes an example mixing all object oriented concepts and the resulting object:

int nyVar; 7
stabl e
msgs < nmsg3 ABSTRACT
VI RTUAL nmsg2
o< MGte2 oo \
nyVar = 5; nyVar = 2;
nyGat el
.—" mai I'It
[msg3]
MyA bstractSuperClass

I NHERI TS MyAbst r act Super Cl ass s

char nmyQt her Var T
st abl e
nsg3 nsg2 msgl <

te2 = : ='a; nt4
nmyGat e nyVar 3: myQt her Var a; TO ENV
[msg4] [msg2,
msgl]
m

MyClass

Specification & Description Language - Real Time Page 59

SDL SDL-RT standard V1.0

i nt nyVar; ’

char nyQ her Var;

(stabl e)

myGat el o nsg5 nsg3 neg2 < nmsgl
o ———p
o | | | |
_ £ _ a. o msg4
myVar = 5; myVar = 3; my &t her Var a; TO ENV

nmyGat e2
o —p
[msg4] [msg2, ¢ ‘ ‘ ‘ ‘
msgl] (mai nt) <unstable> (idle > < stabl e)

An instance of MyClass

Page 60 Specification & Description Language - Real Time

SDL-RT standard V1.0

NTIRT,

12 - Symbols contained in diagrams

The table below shows what symbols can be contained in a specific diagram type.

In the diagrams listed
in this column the
ticked symbols on the

. |gate usage
. |behavior symbols

package

[¢B)

right can be used. %
o
X

| x |block class

block class

| x [process class

| s [block

« | = [semaphore declaration

X
1

process class -

< | x| = |gate definition

block - | -

X

| sc| 1| x| x [Procedure declaration

X

«| x| x| x| % |additional heading

X -

process - | -

- X

procedure -] -

><><><><><><teXt

- X

A diagram listed in the first column can contain the ticked symbolsin the other columns. For
example the process symbol can contain the additional heading symbol, the text symbol and all
the behavior symbols. The behavior symbols are all symbols described in “Behavior” on page 13.

Specification & Description Language - Real Time

Page 61

SDL SDL-RT standard V1.0

13 - Textual representation

Storage format follows XML (eXtensible Markup Language standard from W3C available at
http://www.w3c.org) standard with the following DTD (Document Type Definition):

<l-- Entity for bool eans -->
<l-- -->

<IENTITY % bool ean " (TRUE| FALSE) ">

<!-- Entities for synbol types -->
<l-- -->

<IENTITY % sdl Synmbol Types1

"sdl SysDgnfrm sdl SysTypeDgnfr ni sdl Bl kDgnir nf sdl Bl kTypeDgnFr mj sdl Bl kType| sdl Bl k| sdl Bl kT
ypel nst | sdl PrcsType| sdl Prcs| sdl PrcsTypel nst" >

<IENTI TY % sdl Synbol Types2 "sdl I nherits]|sdl PrcsTypeDgntr ni sdl PrcsDgn¥r ni sdl PrcdDgm
Frn sdl Start| sdl St at e| sdl I nput Si g| sdl SendSi g| sdl SaveSi g| sdl Cont Si g" >

<IENTI TY % sdl Synbol Types3 "sdl Task| sdl Deci si on| sdl Tr ansOpt | sdl Joi n| sdl Text | sdl Com
ment | sdl Text Ext | sdl CnctrQut | sdl Cnctrin| sdl PrcsCreati on| sdl St op">

<IENTITY % sdl Synbol Types4 "sdl I nitTi mer| sdl Reset Ti mer | sdl SenDecl | sdl SenTake| sdl Sem

G ve| sdl PrcdPr ot o] sdl PrcdDecl | sdl PrcdCal | | sdl PrcdSt art | sdl PrcdRet urn">

<IENTI TY % nscSynbol Types

"mscExt er nal Frnj nscl nl i neExpr | nscLi f el i ne| mscLost Msg| nscFoundMsg| mscConment | necGenNane
Ar ea| mscText | nscAbsTi meConstr| nscCondi ti on| necMscRef | nscl nl i neExpr Zone" >

<IENTI TY % hnscSynbol Types "hnscDgnFrn hnscPar al | el Frnj hnscSt art | hnscEnd| hnscCondi -
tion| hmscMscRef | hmscCnct nPoi nt " >

<IENTITY % nscdocSynbol Types "nmscdocDgnfFrnl nscdocMscRef | necdocHeader " >

<IENTITY % Synbol Type

"(%sdl Synbol Types1; | %dl Synbol Types2; | %sdl Synbol Types3; | %sdl Synbol Types4; | %scSynbol Ty
pes; | “hnscSynbol Types; | %rscdocSynbol Types;)" >

<I-- Entity for lifeline conponent type -->
<l-- -->

<IENTITY % Li fel i neConponent Type " (nornj susp| net h| coreg|act)">

<I-- Entity for time interval type -->
<l-- -->

<IENTITY % Ti nel nterval Type "(start|end|timeout|constraint)">

<l-- Entity for connector types -->
<l-- -->

<IENTI TY % Connect or Type "(voi d| chnl | chnl gate| sdl arrow nmscvoi d| nscgat e| nscar r ow
gat e| hnscarrow) ">

<l-- Entity for side for connectors -->
<I-- -->

Page 62 Specification & Description Language - Real Time

http://www.w3c.org
http://www.w3c.org
http://www.w3c.org

SDL-RT standard V1.0 SDL

<IENTITY % Side "(n|s|wWe|x|y)">

<l-- Entity for end types for connectors -->
<l-- -->

<IENTITY % Connect or EndType " (voi dend| arrow ni darrow) ">

<l-- Entity for link segnent orientation -->
<l-- -->

<IENTITY % Oientation "(h|v)">

<l-- Entity for link types -->
<l-- -->

<IENTITY % Li nkType "(sbvoi d| dbvoi d| ssvoi d| dsvoi d| chnl | dec|transopt| msg|rtn)">

<l-- Entity for diagramtypes -->
<l-- -->

<IENTITY % Di agr anifype "(sys| systype| bl k| bl kt ype| prcs| prcstype| prcd| nsc| hnsc| nsc-
doc| cl ass| usec]| act | st at e| conp| seq| col | | depl) ">

<l-- Element for text in synbols/links/... -->
<l-- -->

<! ELEMENT Text (#PCDATA)>
<! ATTLI ST Text

id CDATA "0"
>
<!-- Element for lifeline synbol conponents (MsSC specific) -->
<l-- —==—=—======= -->
<l-- The "Text" conponent and "wi dth" attribute are only for action synbols -->

<! ELEMENT Li f el i neConponent (Text?)>
<! ATTLI ST Li fel i neConponent
type %.i f el i neConponent Type; #REQUI RED

hei ght CDATA #REQUI RED

wi dt h CDATA "ot
>
<I-- Elenment for lifeline synbol tine intervals (MSC specific) -->
<I == e ————————— >

<! ELEMENT Ti nelnterval (Text)>
<I ATTLI ST Ti mel nt erval

type o%Ti mel nt erval Type; #REQUI RED
startpos CDATA #REQUI RED
endpos CDATA "1t

of f set CDATA #REQUI RED

Specification & Description Language - Real Time Page 63

SDL SDL-RT standard V1.0

>
<I-- Element for spanned lifelines for spanning synbols (MSC specific) -->
<| - s ———————— >]

<! ELEMENT SpannedLi feli ne EMPTY>
<I ATTLI ST SpannedLifeline
lifelineld IDREF #REQUI RED

>
<I-- Elenment for inline expression zones (MSC specific) -->
<l-- —=—=—=—=—==== -->

<! ELEMENT Zone EMPTY>
<I ATTLI ST Zone
zoneSynbol Id | DREF #REQUI RED

>

<l-- Elerment for synbols -->

<l-- -->

<l-- The "LifelineConmponent" and "Ti melnterval" conponents and the "dies" attribute are
only for lifelines synbols -->

<l-- The "Zone" conponent is only for inline expression synbols -->

<!-- The "SpannedLifeline" conponent is only for spanning synbols in MSC di agrans -->

<! ELEMENT Synbol (Text, (((LifelineConponent*), (Tinelnterval*)) | ((SpannedLifeline*),
(Zone*)) | (Synbol*)))>
<I ATTLI ST Synbol

synbol Id 1D #REQUI RED
type YSynbol Type; #REQUI RED
xCent er CDATA #REQUI RED
yCent er CDATA #REQUI RED
fi xedDi mensi ons %bool ean; " FALSE"
wi dt h CDATA "10"
hei ght CDATA "10"
di es %bool ean; " FALSE"
>
<l-- Element for connectors -->
<I-- -->
<! ELEMENT Connector (Text, Text)>
<! ATTLI ST Connect or
attachedSynbol Id | DREF #REQUI RED
type % onnect or Type, #REQUI RED
i sQut si de %ool ean; #REQUI RED
si de %Si de; #REQUI RED
position CDATA #REQUI RED
endType %Connect or EndType; #REQUI RED
>
<l-- Elenment for link segnents -->
<l-- -->

Page 64 Specification & Description Language - Real Time

SDL-RT standard V1.0

SDL

<! ELEMENT Li nkSegnent EMPTY>
<! ATTLI ST Li nkSegnent
orientation %ientation; #REQU RED
I ength CDATA #REQUI RED
>

<l-- Elenment for links -->
<!-- -->

<! ELEMENT Li nk (Text, Connector, Connector,
<l ATTLI ST Li nk

type %.i nkType; #REQUI RED
t ext Segnment Num CDATA #REQUI RED
>
<!-- Elenent for diagrans -->
<l-- -->

<! ELEMENT Di agram (Synbol, Link*)>
<I ATTLI ST Di agram

type 9% agr anifype; #REQUI RED
pageW dt h CDATA "21"
pageHei ght CDATA "29. 7"
nbPagesH CDATA "1
nbPagesV CDATA "1

cel | W dt hMm CDATA " 5"

Li nkSegnent *) >

Specification & Description Language - Real Time

Page 65

DL SDL-RT standard V1.0

14 - Example systems

14.1 - Ping Pong

PLAR S3tSstsit bRttt dRetsidie st tsetiissitsitsiisitsttsetsetsssy
Thiz example system iz a hasic send and receive test.

First two processes pPing and pPong are created.

pPing receives start meszage from the environment

and the game starts. To slow it down a hit a timer

haz been introduced.
ddddiiiiiiiiiiiiiiiioiiobiobiiobiibiid 8/

pPing Tstartd ternal T3

[pong]

internal

[pingl

pPong

Ping pong system view

Page 66 Specification & Description Language - Real Time

SDL-RT standard V1.0 SDL

idle

running

idle

start

| ping TO_NAME pPong thait(i()()) | | ping TO_NAME pPong

running running

i

Ping process

Specification & Description Language - Real Time Page 67

SDL SDL-RT standard V1.0

idle

ping

| pong TO_NAME pPing

Pong process

Page 68 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDL

pPong Erw

idle
< idle >

(’_,/start

ping
< running > \

pong

/ < idle >
F——Ctuait(100)

<, running
t—Ctuait

X ping
< running > \

MSC trace of the ping pong system

Specification & Description Language - Real Time Page 69

DL

SDL-RT standard V1.0

14.2 - A global variable manipulation

PLEE SSedst bt dRe Rt dRa st dRet i ittt st s tat sttt tit sttt sttt seisiisesssd
Thiz example shows how to handle properly a global wariable.

Both proceszes try to modify a global wariable in their start transition.

To do so they first take the semaphore dedicated to this global variable.

When they are done they give back the semaphore so that another

process can access the wariable.

In this example we have put timers in each process so that they keep the
semaphore & long time to be sure the conflict to access the semaphore

will happen.

pESE SRRt Rt R bR bR s bR s b bt s st s bbb s st s b st ittt P

int myGlobal¥Wariable: E1
1 BINARY muSemaphore (PRIO, INITIAL_FULL} E1
pProcessA
pProcessB

Global variable manipulation example system

Page 70

Specification & Description Language - Real Time

SDL-RT standard V1.0 SDL

C)

mySemaphore (FOREYER)

M

myGlobalVWariahle = 5;

myTimer (2000

myTimer

J mySemaphore

Process A

Specification & Description Language - Real Time Page 71

SDL SDL-RT standard V1.0

C

j mySemaphore (FOREYER)

myGlobalVWariahle = 10;

% myTimer (2000

myTimer

J mySemaphore

Process B

Page 72 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

pProcessA | | pProcessB | | Ere | | mySemaphore

%mgtimer‘
<, waiting bl

t.ak
-%mgtimer'
iv
< finished >
%mgtimer‘
<, waiting bl

-%mgtimer'

iv

< finished >

MSC trace of the global variable manipulation

Specification & Description Language - Real Time Page 73

1 SDI-I ;i i SDL-RT standard V1.0

15 - Keywords

The following keyword have a meaning at in some specific SDL-RT symbols listed below:

keywords concerned symbols
PRI O Task definition
Task creation
Continuous signal
TO_NAME M essage output
TOID
TO_ENV
FOREVER semaphore manipulation
NO WAI T
>, <, >=, <=, 1=, == decision branches
true, false,
el se
USE text symbol

SDL_MESSAGE_LI ST

Table 2: Keywordsin symbols

Page 74 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

16 - Differenceswith classical SDL

Itisdifficult to list al the differences between SDL-RT and SDL even though an SDL developer
would understand SDL-RT and vice versa. Still to be able to clearly state the differences between
these languages we will pinpoint the main differences in the paragraphs below.

16.1 - Datatypes

Thisisthe most significant difference between SDL and SDL-RT. Classical SDL hasits own data
types and syntax where SDL-RT basically uses ANSI C language. Some symbols have a specific
syntax with SDL-RT since there is no C equivalent instruction such as output, input, save, or
semaphore manipulations.
The advantages are obvious:

 the syntax is known by all real time developers,

* itimplicitly introduces the concept of pointers that does not exist in SDL,

* it easesintegration of legacy code where it is quite tricky to do from classical SDL,

» and last but not least it makes code generation out of SDL-RT quite straightforward.

16.2 - Semaphores

Semaphore isakey concept in real time systems that classical SDL misses. Specific semaphore
symbols have been introduced in SDL-RT to answer the real time developer needs.

16.3 - Inputs

Classical SDL has nice concepts when it comes to dealing with message exchanges. But these
concepts are not so interesting in real time development and are quite tricky to implement on a
real target or operating system. That iswhy SDL-RT has removed the following concepts:
enabling conditions when receiving a message, internal messages, two levels priority messages.

16.4 - Names

Classical SDL uses exotic names for some well known concepts such as "signal” where it is basi-
cally related to a"message”. Since "message” isthe usual name in Real Time Operating Systems
SDL-RT uses the same term.

When it comes to object orientation classical SDL talks about "type" instead of the usual "class'
term. SDL-RT uses the common developer word "class’.

16.5 - Object orientation

Classical SDL uses "virtual", "redefined", and "finalized" when it comes to object oriented con-
cepts. For example a super class should specify atransition is "virtual" so that the sub classis

Specification & Description Language - Real Time Page 75

1 SDI-I ;i i SDL-RT standard V1.0

allowed "redefine" or "finalize" it. Thisis C++ like but actually quite painful when it comesto

write and does not make things any clearer. SDL-RT takesthe Javanotation instead where thereis
no need to specify anything to be able to redefine it in a sub class.

Page 76 Specification & Description Language - Real Time

SDL-RT standard V1.0 1 SDLI ;i i

17 - Lexical rules

A subset of the BNF (Backus-Naur Form) is used in these pages :
<traditional English expression> asit says...

[<stuff>] stuff is optional
{<stuff>}+ stuff is present at |east one or more times
{<stuff>}* stuff is present O or more times

Specification & Description Language - Real Time Page 77

1 SDI-I ;i i SDL-RT standard V1.0

18 - Glossary

ANSI American National Standards Institute

BNF Backus-Naur Form

MSC Message Sequence Chart

RTOS Real Time Operating System

SDL Specification and Description Language

SDL-RT Specification and Description Language - Real Time

Page 78 Specification & Description Language - Real Time

SDL-RT Standard V 1.0

19 - I ndex

A

Action

symbol 19
Action symbol

MSC symbol 45
Additional heading symbol 26
Agents8

Block
class52

C

call

procedure 22
channels 10
Class

block 52

process 54
Comment 24

MSC symbol 45
Connectors 22
Continuoussignal 18
Coregion 42
creation

task 21

D

Datatype

difference with classical SDL 75

Datatypes48
Decision 19

declaration
message 30
procedure 29
process 28
semaphore 31
timer 30

Diagram
contained symbols 61

E

else
decision 20
keyword 74
Environment
definition 8
message output 17
Extension 25

F

false
decision 20
keyword 74
transition option 23
FOREVER
keyword 74

G

give
semaphore 21

Specification & Description Language - Real Time

Page 79

SDL-RT Standard V 1.0

if 19

ifdef 23

Input
difference with classical SDL 75
message 15

instance
MSC 32

K

Keywords 74

L

Lexical rules77

M

Memory
management 49
M essage
communication principles 10
declaration 30
input 15
memory management 49
MSC 35
output 15
parameters 49
save 17
MSC 32
action 45
agent instance 32
comment 45

reference 43
semaphore 33
text symbol 45

N

Naming
convention 51
difference with classical SDL 75
syntax 50
NO _WAIT
keyword 74

O

Object

concept 52

difference with classical SDL 75
OFFSPRING

procedure 22
output 15

P

Package 52
PARENT
procedure 22
PRIO
continuous signal 18
keyword 74
Procedure
call 22
declaration 29
return 26
start 25
Process
behavior 13
class 54
declaration 28

Page 80

Specification & Description Language - Real Time

SDL-RT Standard V 1.0

R

reference
MSC 43
return
procedure 26

S

save 17
SDL_MESSAGE_LIST
keyword 74
SDL-RT
Lexical rules 77
Semaphore
declaration 31
difference with classical SDL 75
give 21
global variable 49
MSC 33
take 20
SENDER
procedure 22
Start
procedure 25
symbol 13
timer 21
State 13
MSC 37
Stop
symbol 14
timer 21
Storage format 62
Symbol
additional heading 26
in diagram 61
ordering 27
text 26
Synchronous calls
MSC 36
System 8

T

take
semaphore 20
Task
creation symbol 21
Text
MSC symbol 45
symbol 26
Timeinterval
MSC 40
Timer
declaration 30
MSC 38
start 21
stop 21
TO_ENV 17
keyword 74
TO_ID 16
keyword 74
TO_NAME 16
keyword 74
Transition option 23
true
decision 20
keyword 74
transition option 23

U

USE
keyword 74

X

XML
data storage 62

Specification & Description Language - Real Time

Page 81

	1 - Introduction
	2 - Architecture
	2.1 - System
	2.2 - Agents

	3 - Communication
	4 - Behavior
	4.1 - Start
	4.2 - State
	4.3 - Stop
	4.4 - Message input
	4.5 - Message output
	4.5.1 Queue Id
	4.5.2 Process name
	4.5.3 Environment

	4.6 - Message save
	4.7 - Continuous signal
	4.8 - Action
	4.9 - Decision
	4.10 - Semaphore take
	4.11 - Semaphore give
	4.12 - Timer start
	4.13 - Timer stop
	4.14 - Task creation
	4.15 - Procedure call
	4.16 - Connectors
	4.17 - Transition option
	4.18 - Comment
	4.19 - Extension
	4.20 - Procedure start
	4.21 - Procedure return
	4.22 - Text symbol
	4.23 - Additional heading symbol
	4.24 - Symbols ordering

	5 - Declarations
	5.1 - Process
	5.2 - Procedure declaration
	5.2.1 SDL-RT defined procedure
	5.2.2 C defined procedure

	5.3 - Messages
	5.4 - Timers
	5.5 - Semaphores

	6 - MSC
	6.1 - Agent instance
	6.2 - Semaphore representation
	6.3 - Semaphore manipulations
	6.4 - Message exchange
	6.5 - Synchronous calls
	6.6 - State
	6.7 - Timers
	6.8 - Time interval
	6.9 - Coregion
	6.10 - MSC reference
	6.11 - Text symbol
	6.12 - Comment
	6.13 - Action
	6.14 - High-level MSC (HMSC)

	7 - Data types
	7.1 - Type definitions and headers
	7.2 - Variables
	7.3 - C functions
	7.4 - External functions

	8 - Memory management
	8.1 - Global variables
	8.2 - Message parameters

	9 - Syntax
	10 - Semantic
	11 - Object orientation
	11.1 - Package
	11.2 - Block class
	11.3 - Process class

	12 - Symbols contained in diagrams
	13 - Textual representation
	14 - Example systems
	14.1 - Ping Pong
	14.2 - A global variable manipulation

	15 - Keywords
	16 - Differences with classical SDL
	16.1 - Data types
	16.2 - Semaphores
	16.3 - Inputs
	16.4 - Names
	16.5 - Object orientation

	17 - Lexical rules
	18 - Glossary
	19 - Index

